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Résumé

Cette thèse décrit la génération, la propagation et les structures des ondes extrêmes op-
tiques dans les milieux Kerr et chiraux. Le comportement dynamique du phénomène d’onde
extrême est étudié à travers des modèles scalaires et vectoriels de Schrödinger non linéaire.
Ensuite, les transformations de similitude et de Darboux sont utilisées pour construire les solu-
tions rationnelles reliées aux ondes extrêmes optiques. Les propriétés linéaires et non linéaires
des prototypes ďondes extrêmes sont mises en exergue à travers des méthodes analytiques et
numériques. Puis, ľinfluence et la controllabilité des effets linéaires et non linéaires sur leur
propagation sont soulignées.

Cette étude commence avec une équation inhomogène non paraxiale de Schrödinger non
linéaire à coeficients de dispersion, de non-linéarité et de non paraxialité variables, qui gouver-
nent la propagation non linéaire des ondes dans un système optique inhomogène. Les propriétés
des ondes extrêmes sont analysées à ľaide des fonctions polynomiales et elliptiques Jacobiennes.
Par la suite, se fait la derivation scalaire et vectorielle des équations de Schrödinger non linéaires
avec polarisation non linéaire droite et gauche. Les propriétés des ondes extrêmes optiques chi-
rales sont analysées à partir des résultats analytiques, montrant ľinfluence de ľactivité optique
sur les ondes extrêmes. Ľensemble des équations scalaires et vectorielles de Schrödinger non
linéaires non paraxiales à coefficients constants et variables sont derivées pour améliorer la de-
scription de la propagation des ondes extrêmes dans les milieux optiques chiraux. La condition
ďinstabilité modulationnelle du background revèle ľexistence des vecteurs ďondes extrêmes et
le nombre de branches stables et instables. De plus, ľinfluence de non paraxialité, de ľactivité
optique et de la vitesse de groupe linéaire sont également mises en evidence sous les regimes
defocalisant et focalisant de ľéquation vectorielle non paraxiale de schrödinger non linéaire à
coefficients constants et variables. À travers un schema algorithmique de grande applicabilité
sur les méthodes de propagation des ondes non paraxiales, ľeffet le plus influent et la controla-
bilité simultanée des effets combinés sont revelés.

Mots clés: Ondes extrêmes optiques, milieux Kerr et chiraux, non paraxialité, transforma-
tion de similitude, transformation de Darboux modifiée, activité optique.
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Abstract

This thesis describes the generation, the propagation and structures of optical rogue waves
in Kerr and chiral media. The dynamical behavior of rogue wave phenomenon is studied through
scalar and vectorial nonlinear Schrödinger (NLS) models. Then, the similarity and Darboux
transformations are used to construct the first-and second-order rational solutions related to
optical rogue waves. The linear and nonlinear properties of rogue wave prototypes are inves-
tigated through analytical and numerical methods. Then, the influence and controllability of
linear and nonlinear effects on rogue wave propagation are underlined.

The study starts with an inhomogeneous nonparaxial NLS equation with varying dispersion,
nonlinearity and nonparaxiality coefficients which governs the nonlinear wave propagation in
an inhomogeneous optical fiber system. Optical rogue wave properties are analyzed through
polynomial and Jacobian elliptic functions. Then follow the derivation of scalar and vectorial
NLS equations with right-and left-hand nonlinear polarization. The features of chiral optical
rogue waves are analyzed from analytical results, showing the influence of optical activity on
rogue waves. Then, both scalar and vector nonparaxial NLS equations with constant and mod-
ulated coefficients are derived to improve the description of rogue wave propagation in optical
chiral media. The condition of modulation instability of the background reveals the existence of
vector rogue waves and the number of stable and unstable branches. Moreover, the influence of
nonparaxiality, optical activity and walk-off effect are also evidence under the defocusing and
focusing regimes of the vector nonparaxial NLS equations with constant and modulated coeffi-
cients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation
methods, the most influential effect and the simultaneous controllability of combined effects are
underlined.
Keywords: Optical rogue waves, Kerr and chiral media, nonparaxiality, similarity transforma-
tion, modified Darboux transformation, optical activity.
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General Introduction

Intercontinental exchanges have an undeniable importance and are of special interest in
the development of a country and people well-being. These exchanges have been done for
centuries by different modes of transportation as airways, waterways and roadways. Among
these exchanges, maritime transport is a paramount vital for international trading and is a well-
known way of heavy exchanges, especially for petroleum product transportation which are more
often done on farther distances in which it is the most economic mode if not, the only possible
way. Maritime transport also called waterborne transport, has been achieved widely for many
decades as one of easier transportation of persons and goods [1]. As any transportation mode
has advantages and disadvantages, maritime transport has known several maritime disasters
and risks due to giant waves in the deep sea. Before 1826, those giant waves were called white
wall by mariners and their appearances were a maritime myth until the first photographic cash
by the ship commandant ”ESSO languedoc” in 1980. On 1 January 1995, those giant waves
were measured precisely and scientifically at the Draupner oil plateform in the north sea [2, 3].
The measurement of the wave was 25.6 m whereas the significant wave height (SWH) of the
water was 10.8 m. Since that day was born the English name rogue waves or freak waves. In
order to reduce the travel risk for mariners, rogue waves have been studied extensively in the
ocean and are also called monster waves, killer waves, giant waves, extreme waves, or abnormal
waves [4, 5, 6, 7, 8, 9, 10]. The study of this strange and disastrous phenomenon was a very
big challenge because of their rarity and spontaneous appearance in the ocean. Rogue wave
events were sometimes observed after many months and even years and it was neither easier
for scientist to observe the rogue wave appearance because of their short lifetime and nor safer
because of their potential destructive nature. After many studies, researchers like J.M. Soto-
Crespo, Ph. Grelu and Nail Akhmediev [11] have shown through experiences that it will be
easier and safer to study rogue wave phenomenon in laboratory rather than in ocean.

As pointed out by many scientists, rogue waves are nonlinear single oceanic waves of ex-
tremely large amplitude, much higher than the average waves and are localized both in space
and time [11, 12, 13]. They appear from nowhere and disappear without a trace and their
reappearance without major shape changes gives rise to a novel appellation of rogue waves,
namely rogons [14]. Because of their more complicated way to be studied in oceans, researchers
extended this strange phenomenon in optical fibers for better understanding and the cause
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of their enormous growth became a subject of scientific research. Thus, the nature of rogue
wave has been discussed in hydrodynamics [15, 16, 17, 18] and initiated in nonlinear optics,
by the pioneering measurement of Solli et al. [19]. Through the analysis of the supercontinuum
generation in optical fibers, and later in a photonic crystal fiber [20]. Their occurrences have
been later observed in optical cavities [21], optical wave guides [22], Bose-Einstein condensates
[23, 24, 25, 26], capillary waves [27], superfluids [317], laser-plasma interactions [29, 30], in the
atmosphere [31, 32], econophysics [33] and even in finance [34, 35].

Rogue wave phenomena can be described in both physical and mathematical aspects. In
its physical aspect, three main features have been set to qualify a rogue wave phenomenon.
First, the wave events should be twice more higher than the wave amplitude of the SWH with
extremely large amplitude. Secondly, they should appear and disappear unpredictably. This
qualifier is equivalent to their unexpectedly reappearance and disappearance. Lastly, rogue
wave events should arise more frequently and their probability distribution function (PDF)
should display an L-shaped distribution of amplitude [19, 16, 36, 37, 38]. In its mathematical
aspect, rogue wave is an exact rational solution obtained from the integrable scalar nonlinear
Schrödinger (NLS) equation with finite background, called Peregrine soliton [39]. The Peregrine
soliton (PS) is the mathematical rogue wave prototype in self-focusing regime due to its local-
ization in both space and time, hence, it denomination usual rogue wave. In the same aspect,
others rogue wave solutions with finite backgrounds called unusual rogue waves were obtained
from the focusing stardard NLS equation. On the one hand, one denotes the Kuznetsov-Ma
(KM) solitons [40] which have the peculiarity of being localized in temporal dimension with
periodicity along the propagation direction and on the other hand, the Akhmediev breathers
(ABs) [41] which have the peculiarity of being localized along the propagation direction with
periodicity in temporal dimension [42].

The concept of rogue waves which refers to rogons has been applied to pulses emerging from
optical fibers and both numerical simulations and experiments have shown that the probability
of their generations increases with the increase of the initial noise level responsible for the
modulation instability (MI) [43, 44, 45, 46, 47, 48, 49, 50, 51]. It is worth noting that the MI
leads to their generation evolves two distinct directions with opposite sense. On the one hand,
it deals with the undesirable effects like the non-return-to-zero code in optical communication,
the drastic enhancement of MI gain in the WDM (wavelength-division multiplexing) systems
which sets the limitation of the bandwidth window of the communication system, MI lasers
and the new frequency generations of ultra short pulses in optical systems. On the other hand,
a suitable manipulation of MI has also found important applications in optical amplification of
weak signal, dispersion management, optical switching and the production of ultra short pulses.
Although their multiple observations in many other fields, the origins and the predictability
of rogons remain uncertainty as well as the kind of MI that leads to rogue wave generation.
In fact, in optical communication systems, many works have been done with the objective of
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reducing the disastrous effects caused by MI [52, 53, 54]. Important progress has been done
very recently by Baronio et al. [55] who showed that the MI is a necessary but not a sufficient
condition for the existence of rogue waves. Through their results, they confirmed that rogue
waves can exist if and only if the MI gain band also contains the zero-frequency perturbation
as a limiting case known as baseband MI.

The standard NLS equation is known as the universal model to describe rogue wave phe-
nomenon in oceans [56, 57, 58], optical fibers [15, 59] and in many physical systems [60, 61, 62].
In particular, rogue wave solutions emerging from optical fibers have been found analytically for
many types of generalized NLS models such as NLS models with constant coefficients [39, 63]
and NLS models with varying coefficients [14, 64, 65]. After many years, scientists recognized
that, describing complex systems with the standard NLS equation is to oversimplify the nonlin-
ear phenomena that can occur in those systems. They found in practice that, the standard NLS
equation is not adequate for the description of some realistic problems like the transmission of
ultrashort pulses of the order of subpicosecond and femtosecond frequencies in highly dispersive
optical fibers. As consequence, this problem pushes the researchers to turn out to higher-order
NLS equations [66, 67, 68]. Therefore, the NLS equation has been extended to take into ac-
count the third-order dispersion (TOD) [69, 70, 71, 72] and nonlinear effects such as self-phase
modulation (SPM) [72, 73], cross-phase modulation (XPM) [24, 72], self-steepening (SS) [68],
self-frequency shift (SFS) [67, 71], and four-wave mixing (FWM) [24, 71, 72]. Thus, many works
have been carried out based on higher-order NLS equations with constant coefficients and with
varying coefficients. Moreover, it was pointed out that the vector NLS equations describe rogue
waves with higher accuracy than the scalar models [74, 75, 76]. Under this assumption, the ex-
istence of vector rogue waves in the defocusing regime was a crucial progress in the explanation
of rogue wave in multicomponent systems [55].

Several nonlinear phenomena [77, 78, 79, 80] have been studied in optical fibers with the
objective to solve the problem of controllability of spontaneous waves. Therefore, controllability
of spontaneous waves has been performed in both theoretical and experimental approaches to
investigate the interesting phenomena of rogue waves in optical fibers. Much attention has been
focused on understanding of rogue wave propagation in optical fibers filled with chiral mate-
rials, with the objectives to control the chiral level and protect organic chiral materials from
damage, during the processing temperature of silica [81, 82, 83, 84, 85, 86]. Despite this evident
progress, the problem of controllability in the presence of higher-order terms remain unknown.
It has been found that, the shape, the amplitude, the existence and even the propagation of
rogue waves in Kerr and chiral media can be strongly affected by nonlinear effects which can
be generated from the addition of higher-order terms. One of these effects is the nonparaxiality
which arises in the miniaturization of devices involving multiplexed beams [62, 87, 315]. Accord-
ing to the controllability of rogue waves, the problem now is what waves, which are localized
in both space and time and depict a unique event that appears from nowhere and disappears

3



without a trace, can exist in the presence of the GVD and Kerr nonlinearity in the nonparaxial
approximation. In addition, under the assumption of high intensity and beam narrowness, what
will be the adequate model, which can be used efficiently to describe simultaneous effects of the
nonparaxiality [60], optical activity [74, 89, 90] and walk-off [91] on rogue waves propagating
in optical fibers, filled with chiral materials. In view of great scientific importance of chiral
molecules in life-science and pharmaceutical industries [92], what will be the impact of chiral
materials like chiral optical fibers in optics and optical communication.

In this thesis, one mainly focuses on the generation and propagation of rogue waves in optical
Kerr and chiral media. The study is based on improved scalar and vector NLS models derived
under the Born-Fedorov formalism, based on the predicted Maxwell’s equations for isotropic
chiral media. The novelty in the study is the use of models which satisfy both, the breakdown
of the paraxial approximation as well as the requirements of time-reversal symmetry and reci-
procity through the Drude-Born-Federov formalism [82, 84, 85], which is an improvement in
the description of spontaneous waves in chiral media. Analytical methods such as the similarity
reduction, modified Darboux transformation (mDT) [63, 93, 94] and dressing-Darboux trans-
formation (DDT) [75, 95, 96, 97, 98, 99] methods are of especial interest to investigate rational
solutions that lead to rogue wave generation in optical fibers. Numerical methods such as the
fourth-order Runge-Kutta method and pseudo-spectral technique [61] are used to compute effi-
ciently and accurately the dynamic behavior of optical rogue wave solutions. These solutions are
of great importance in the sense that they reveal the properties and features of the interesting
phenomenon of rogue wave, on the one hand, and the possible control of chiral level, control
on the existence of left or right-handed and control of energy transfer from one component
to another in chiral optical fibers, on the other hand. In addition they reveal the contrast of
optical activity and the interplay of chiral materials which is a scientific improvement of great
importance for technological industries.

In chapter 1, the historical context of rogue waves in oceanography and from hydrodynam-
ics to optics, as well as the technological evolution of information transportation in different
types of optical fibers and wave guides is given. Experimental generation of rogue waves in
optical fibers is described and the characteristic properties of the equipment are underlined.
The concordance between the analytical, numerical and experimental rogue wave generation
methods is presented. Significant advances of rogue wave origins and predictability, description
and controllability are summarized. Then, the important progress of scientific works and their
potential applications are elucidated.

In chapter 2, the integrability method called similarity transformation or symmetry reduction
method is developed for non integrable models. The modulation instability phenomenon is
studied to determine the stable and unstable branches and by the way the existence and non
existence of rogue wave components in chiral media. Then, the Lax pair, the mDT and DDT
analytical methods are presented as the key to construct the prototypes of rogue wave solutions.
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Fourth-order Runge-Kutta method, difference-differential equation method and fast Fourier
transforms (FFTs) are also presented as efficient numerical methods to generate usual and
unusual rogue waves.

Chapter 3, presents the results of the thesis.
Firstly, the similarity transformation and the mDT are used to investigate the analyti-

cal nonparaxial rogue wave solutions. Then, a particular attention is focused on the effect of
nonparaxiality, and then, on the propagation of rogue waves, to solve the problem of their
controllability in the nonparaxial approximation, with particular selection of parameters of the
original equation.

Secondly, starting from the Born-Fedorov equations, the derivation of the two-dimensional
NLS equation in chiral optical fibers is presented. The symmetry reduction and the mDT are
used to generate the analytical chiral optical rogue wave solutions in the presence and in the
absence of management. Then, the influence of optical activity on the propagation of optical
rogue waves is presented, showing their possible control in chiral media. The exact solutions
of the chiral couple nonlinear Schrödinger (CNLS) equations with coupled space-dependence
coupling field are constructed. Then, the physical properties of vector rogue waves with mixed
polarization in chiral optical fiber are given.

Thirdly, one finds under the boundedness condition, the nonparaxial chiral optical rogue
waves with modulated coefficients via the mDT method. An investigation on the dynamical
behavior and features of nonparaxial chiral optical rogue waves is made through their specific
control parameters. Then, the influence of nonparaxiality, optical activity and walk-off on the
vector nonparaxial chiral NLS equations with constant coefficients is analyzed. In addition,
the influence of combined effects through the vector nonparaxial chiral NLS equations with
modulated coefficients is revealed .

Lastly, the model is introduced and the integrability constraints are presented. Then, the
first-and second-order rogue wave solutions, investigated analytically by the mDT and numer-
ically by one pseudo-spectral method names, difference-differential equation method is pre-
sented. Moreover, the contrast of optical activity through the rogue wave profiles is shown and
the interplay of chiral materials is elucidated.

The thesis ends with a general conclusion where are summarized the mainly outcomes. Some
prospects are given for further investigations on the progress of optical rogue wave field.
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Chapter 1

Rogue wave historical context:
From hydrodynamics to optics

1.1 Introduction

The rogue wave (RW) phenomenon was a maritime myth which had been nourished longtime
ago by sailor folklore of monster or killer waves. After the first photographic cash in 1980, it
was scientifically confirmed by live accounts of maritime disasters involving tankers and liners
as well as anomalous water elevation recordings on offshore platforms, such as the henceforth
notorious New Year’s wave at the Draupner platform in the North Sea, recorded on January
1st, 1995 [7]. The field of Rogue waves (RWs) is one of the most active multidisciplinary areas of
research [42]. The concept of RW has been studied extensively in oceanography, hydrodynamics,
optics and photonics, plasma physics, and Bose-Einstein condensation [16, 100]. Scientists from
a wide range of disciplines acknowledge that this general rogue wave concept can describe
in a relevant way extreme wave events of different origins, from the killer waves in the ocean
[7, 58, 101, 102] to the extreme pulses in optics [17, 103], and even the financial crises in economy
[34]. As their understanding may be essential for reducing the travel risk on high seas, the RW
concept introduced a unifying idea that can be applied to a variety of extreme phenomena in
different fields. Among this filed, optical RW field occupies a special place because of its wide
potential applications, which have significantly enriched the original concept. Optical RW was
initiated in nonlinear optics, by Solli et al. [19] in 2007, and later in a photonic crystal fiber
[20], effectively announcing the birth of optical RW field. This found of RWs as high amplitude
pulses in supercontinuum generation is not the only type of RWs in optics. They can also be
found in the output of laser radiation [11, 36, 104, 105, 106] and in other types of optical cavities
[107, 108, 109, 110]. They can be influenced by Brillouin scattering [111] or by the Raman effect
[112]. Indeed, there is a multiplicity of RW forms [17, 103, 113, 114, 115], and this can make them
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difficult to be classified. The models describing these physical systems are most often based on
the nonlinear Schrödinger (NLS) equation and its variants [63]. Gradually, the RW has been
found in many other systems such as the Hirota equation [116], Davey-Stewartson equation
[117], Boussinesq equation [118], Sasa-Satsuma equation [119], Fokas-Lenells equation [120],
the Manakov system [121], coupled Hirota equations [122, 123], NLS-Maxwell-Bloch system
[124] and Yajima-Oikawa system [125]. The first-order rational solution of the NLS equation
was constructed by the British mathematician Howell Peregrine in 1982. This first-order RW
solution, called Peregrine soliton is endowed with localization in both space and time (1+1)
dimensions [39]. Although this solution is usually termed as "Peregrine soliton", is not a soliton
in the ordinary sense, since its profile never stays stationary. Its high peak amplitude as well
as its asymptotic connection with a constant background, which supports the idea that this
extreme wave comes from nowhere and disappears without a trace [12], has made the Peregrine
soliton a central prototype of rogue wave manifestations, even though the notion of statistical
distributions, which is meant to confront the experimental appearance of rogue waves among
chaotic wave fields. Until now, the Peregrine soliton known as usual RW, has continued to play
a pivotal role for modelling RWs in scalar NLS systems, as well as a gauge to assess other RW
solutions proposed for systems other than the NLS equation [42]. Analytically, it can be viewed
as the limiting case of Kuzenetsov-Ma [40] and Akhmediev breathers [41]. These RW prototypes
are RW solutions with finite backgrounds called unusual RWs. These three exact solutions
provide controllable initial excitation conditions for the realization of rogue waves [126]. Of the
current physical systems of interest, nonlinear optical fibers represent the mature experimental
platform for observing optical rogue waves [15, 40, 57, 127, 128, 129]. Therefore, Dudley et al.
[15] realized experimentally in 2009, the Akhmediev breathers. Then, in 2010, Kibler et al. [127]
confirmed the existence of Peregrine rogue wave by using the frequency-resolved optical gating
technique. Later, in more detailed experimental observations, Hammani et al. [128] revealed
the spectral evolution of the growth and attenuation of Akhmediev breathers. Moreover, the
Kuznetsov-Ma soliton was also confirmed experimentally in [40].

In this chapter, the historical context of rogue waves in oceanography and from hydrody-
namics to optics, as well as the technological evolution of optical communication in different
types of optical fibers and wave guides is revealed. Experimental generation of rogue waves in
optical fibers is described and the characteristic properties of the equipment are underlined.
The concordance between the analytical, numerical and experimental rogue wave generation
methods is presented. Significant advances of rogue wave origins and predictability, description
and controllability are summarized. Finally, the important progress of scientific works and their
potential applications are elucidated.
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1.2 Rogue wave historical context in oceanography

Rogue waves (RWs), known as the oceanic phenomena responsible for the maritime disas-
ters, have been thought to appear from nowhere and disappear without a trace [12, 21, 101].
It has been proved that rogue wave is localized in both space and time with crest height two
times larger, sometimes, more than three times larger, than the significant wave height of its
surroundings [7, 130]. RWs also called freak waves are waves of giant amplitude that occur more
frequently than expected from the normal law [4, 113].

1.2.1 Rogue wave etymology

Freak, rogue, or giant waves correspond to large amplitude waves surprisingly appearing
on the sea surface ("wave from nowhere"). Ocean RWs are rare events with extreme magnitude
which can pose a serious threat to large ships in the ocean. Such waves can be accompanied
by deep troughs (holes), which occur before and/or after the largest crest. As pointed out by
Lawton [131], the freak waves have been part of marine folklore for centuries. Seafarers speak
of "walls of water", or of "holes in the sea", or of several successive high waves ("three sisters"),
which appear without warning in otherwise benign conditions. Observations gathered by the
oil and shipping industries suggest there really is something out a true monster of the deep
that devours ships and sailors without mercy or warning. There are several definitions for such
surprising huge waves. Very often the term "extreme waves" is used to specify the tail of some
typical statistical distribution of wave heights (generally a Rayleigh distribution), meanwhile
the term "freak waves" describes the large amplitude waves occurring more often than would be
expected from the background probability distribution. Sometimes, the definition of the freak
waves includes that such waves are too high, too asymmetric and too steep. More popular now
is the amplitude criterion of freak waves: its height should exceed the significant wave height
in 2 to 2.2 times. Many investigations have been done to understand the physics behind the
spontaneous appearance of freak wave and its relation with environmental conditions such as
the wind, atmospheric pressure, bathymetry and current field [5].

1.2.2 Rogue wave events in oceanography

In 2001, a large collection of freak wave observations from ships was given in the New
Scientist Magazine [131]. It was shown that twenty-two super-carriers were lost due to collisions
with rogue waves from 1969 to 1994 in the Pacific and Atlantic, causing 525 fatalities, see Fig.
1.

At the very least, twelve events of the ship collisions with freak waves were recorded after
1952 in the Indian Ocean, near the Agulhas Current, coast off South Africa [132]. As illus-
tration, the rogue wave event that occurred in shallow water on the 4th of November 2000
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Figure 1: Statistics of super-carrier collision with rogue waves for 1968-1994 [5].

with the NOAA vessel is reported in the above description reproduced from Graham [133]. "At
11:30 a.m. last Saturday morning (November 4, 2000), the 56-foot research vessel R/V Ballena
capsized in a rogue wave south of Point Arguello, California. The Channel Islands National
Marine Sanctuary’s research vessel was engaged in a routine side-scan sonar survey for the U.
S. Geological Survey of the seafloor along the 30-foot-depth contour approximately 1/4 nautical
mile from the shore. The crew of the R/V Ballena, all of whom survived, consisted of the cap-
tain, NOAA Corps officer LCdr. Mark Pickett, USGS research scientist Dr. Guy Cochrane, and
USGS research assistant, Mike Boyle. According to National Oceanic and Atmospheric Admin-
istration spokesman Matthew Stout, the weather was good, with clear skies and glassy swells.
The forecasted swell was 7 feet and the actual swell appeared to be 5-7 feet. At approximately
11:30 a.m., Pickett and Boyle said they observed a 15-foot swell begin to break 100 feet from the
vessel. The wave crested and broke above the vessel, caught the Ballena broadside, and quickly
overturned her. All crewmembers were able to escape the overturned vessel and deploy the ves-
sel’s liferaft. The crew attempted to paddle to the shore, but realized the possibility of navigating
the raft safely to shore was unlikely due to strong near-shore currents. The crew abandoned
the liferaft approximately 150 feet from shore and attempted to swim to safety. After reaching
shore, Pickett swam back out first to assist Boyle to safety and again to assist Cochrane safely
to shore. The crew climbed the rocky cliffs along the shore. The R/V Ballena is a total loss."

Some photos of rogue waves are presented on Fig. 2. The description of the conditions when

one of the photos (left upper) was taken is given below [135]. "A substantial gale was moving
across Long Island, sending a very long swell down our way, meeting the Gulf Stream. We
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Figure 2: Various photos of Rogue waves [134].

saw several rogue waves during the late morning on the horizon, but thought they were whales
jumping. It was actually a nice day with light breezes and no significant sea. Only the very long
swell, of about 15 feet high and probably 600 to 1000 feet long. This one hit us at the change of
the watch at about noon. The photographer was an engineer, and this was the last photo on his
roll of film. We were on the wing of the bridge, with a height of eye of 56 feet, and this wave
broke over our heads. This shot was taken as we were diving down off the face of the second
of a set of three waves, so the ship just kept falling into the trough, which just kept opening
up under us. It bent the foremast (shown) back about 20 degrees, tore the foreword firefighting
station (also shown) off the deck (rails, monitor, platform and all) and threw it against the face
of the house. It also bent all the catwalks back severely. Later that night, about 19:30, another
wave hit the after house, hitting the stack and sending solid water down into the engine room
through the forced draft blower intakes." These description is an evidence that rogue waves are
unusually large amplitude waves that appear from nowhere in the open sea.

1.2.3 Main features of rogue wave phenomenon

Evidence that extreme waves can occur in nature is provided, among others, by the Draup-
ner and Andrea events, which have been extensively studied over the last decade [58, 102, 136,
137, 138, 139]. Tayfun analysi’s on oceanic measurements has shown that large waves (measured
as a function of time at a given point) result from the constructive interference (focusing) of
elementary waves with random amplitudes and phases enhanced by second-order non-resonant
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or bound nonlinearities [140]. Moreover, it has been proved that the surface statistics follow
the Tayfun[141] distribution[141] in accordance with the observations [140, 142, 143, 144]. This
result has been confirmed by a recent data quality control and statistical analysis of single-point
measurements from fixed sensors mounted on offshore platforms, the majority of which were
recorded in the North Sea [145]. The analysis of an ensemble of 122 million individual waves
revealed 3649 rogue events, concluding that rogue waves observed at a point in time are merely
rare events induced by dispersive focusing. Thus, a wave whose crest height exceeds the rogue
threshold [102] 1.25Hs occurs on average once every Nr ∼ 104 waves with Nr referred to as the
return period of a rogue wave and Hs is the significant wave height. Some even more recent
measurements off the west coast of Ireland [146] revealed similar statistics with 13 rogue events
out of an ensemble of 750873 individual waves and Nr ∼ 6 × 104. Further, Fedele et al. [147]
have considered the famous Draupner and Andrea rogue waves and the less well-known Killard
rogue wave [146]. Among these events, the Andrea rogue wave was measured by Conoco on 9
November 2007 with a system of four Teledyne Optech lasers mounted in a square array on
the Ekofisk platform in the North Sea in a water depth d = 74m [137, 138]. The metocean
conditions of the Andrea wave were similar to those of the Draupner wave measured by Statoil
at a nearby platform (d = 70m) on 1 January 1995 with a downward-looking laser-based wave
sensor [148]. The Killard wave was measured by ESB International on 28 January 2014 by a
Waverider buoy off the west coast of Ireland in a water depth d = 39m. The wave parameters of
the three sea states in which the rogue wave had occurred are summarized in Table 1. Through
the Methods section, Fedele et al. have shown that the actual crest-to-trough (wave) heights
H and crest heights h meet the classical criteria [102] H

Hs
> 2 and h

Hs
> 1.25 to qualify the

Andrea, Draupner and Killard extreme events as rogue waves. See Table 1

To summarize, three main features are used to qualify an event as rogue wave. First, the
wave events should be at the very least, twice more higher than the wave amplitude of the
significant wave height (SWH) with extremely large amplitude. Secondly, they should appear
and disappear unpredictably. This qualifier is also in agreement with their unexpectedly reap-
pearance and disappearance. Lastly, rogue wave events should arise more frequently and their
probability distribution function (PDF) should display an L-shaped distribution of amplitude
[19, 36, 37].

1.3 Extension of rogue wave phenomenon in optical fiber

Scientific interest in the rogue wave phenomenon was to a great extend supported by the
fact that severe sea waves exceeded scientist expectations. Hence the builders and customers of
ships and offshore constructions are unable to adequately estimate the safety and risks [149].

11



Table 1: Wave parameters and various statistics of the simulated sea states labelled Andrea, Draupner and Killard. The
Killard rogue wave occurred on a water depth of 39m, however the hincast input spectrum could only be computed at
an averaged water depth of 58m. Statistical parameters are from an ensemble of 50 HOS simulations of sea states. We
refer to the Methods section for the definitions of the wave parameters. Note that two wave heights are given for each
wave: the zero-downcrossing value (crest to trough) and the zero-upcrossing value (trough to crest). [147].

1.3.1 Challenge of rogue wave study in deep water

Prediction is a central goal and a yet-unresolved challenge in the investigation of oceanic
RWs. In the ocean, RW phenomena are still mysterious events. Although decades of research
have shed a lot of light on several aspects of RW generation [5], their predictability remain
uncertainty as well as the kind of MI that leads to rogue wave generation. One of the most
challenge on RW study was to find reasonable physical principles that can be formulated in
mathematical terms which can generate useful predictions on what can happen, based on ob-
servations and parameters. As to date, important progress has been done and mathematical
solutions are in accordance with the observations [149]. For instance, in oceanography, there
is a predictability time scale associated with rogue wave events. It has been shown that larger
rogue waves have a shorter horizon of predictability. Therefore, RW events are less predictable
in rougher seas due to nonlinearities. In spite of advances of RW study in oceanography, the
direct effect of wind on rogue wave dynamics is also of great importance in their occurrence
probability. But, until now, only simple models have been used to consider wind input on RW
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generation [149]. Confronted with the short lifetime, rarety appearance and the potential de-
structive nature of RWs in the ocean, as well as their exact prediction, scientists decided to
focus their attention on other physical systems to explain the RW behavior.

1.3.2 Easier and safer way of rogue wave study

Many physical systems exhibit behavior associated with the emergence of high amplitude
events that occur with low probability but with dramatic impact. After the pioneering mea-
surement of Solli et al. [19] through the analysis of the supercontinuum generation in optical
fibers and later in a photonic crystal fiber (PCF) [20], an analogy between optical instability
and oceanic RWs was suggested. These pioneering results made possible the first quantita-
tive analysis of the fluctuation at the spectral edge of a broadband supercontinuum and have
shown how large amplitude structures can emerge from optical systems. In optics, Rws have
been identified through the probability theory that associates RW events with extreme value of
probability distributions and on the approach, based on their amplitude comparatively to the
SWH in oceanography. Instead of considering the field amplitude as in the deep sea, the inten-
sity is of special interest in optics and can takes many forms such as the intensity time series,
the level of two dimensional camera image and the space-time intensity evolution of the optical
field [36]. Moreover, it was found that RW content of a turbulent wave field, represented by
extreme deviations from the average wave amplitude [150, 151]. Most importantly, the RW ap-
pearance probability depends on initial conditions [151] which can generate chaotic wave field
due to MI [17]. Briefly, optical fibers are favorable tabletop laboratories to investigate both
coherent and incoherent nonlinear waves and integrable turbulence [47, 51, 151, 152, 153, 154].

1.3.3 Raisons of rogue wave extension in optical fiber

The term RW originates from oceanography, is a mysterious and severely destructive wave
[5, 17, 155]. So far, the characteristic of oceanic RW has been found in different physical contexts
and optical RW, firstly discovered by Solli et al. in the PCF, is deemed to be an optical analogue
of oceanic RW because of two reasons [19]. Firstly, the highly skewed L-shaped probability
soliton intensity distribution with long tail can be regarded as a specified feature of RW, which
predicts the occurrence of high amplitude event with a low probability [156, 157]. Secondly,
modulation instability (MI) can make optical RW generated when considering the initial noise
perturbation, which is also a dramatic nonlinear effect related to the generation of oceanic RW
[49, 58]. Later, optical RW has also been found in many other optical systems, such as mode-
locked laser [11] and fiber Raman amplifiers [158]. Therefore, in the process of supercontinuum
(SC) generation occurring in optical fibers [70], the appearance of Rw seems to be spontaneous,
which is a sudden and rare event [16, 150, 159].
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1.4 Rogue wave generation in optics

1.4.1 Origins and predictability of rogue waves in optical fiber

"Optical rogue waves" term, coined by Solli et al. [19] is based on striking phenomenolog-
ical and physical similarities between the extreme events in optical system and oceanic RWs.
Nonlinear mechanisms such as the nonlinear focusing due to the MI [4, 160, 161, 162, 163], as
well as the nonlinear spectral instability [10], and anomalous wind excitation [21], have been
suggested to explain oceanic RWs. In reality, Oceanic RWs appear to follow the "L-shape"
statistics in which most waves have small amplitudes but, extreme striking waves can occur
with non-negligible probability [164, 165]. RWs appear like "walls of water" and required ex-
treme sensitivity to initial conditions for their generation. So far, the same highly sensitivity
to initial conditions have been observed in Supercontinuum generation in optics. Moreover, the
self-frequency shift which occur in water wave propagation is also observed in nonlinear fiber.
Hence, the analogy between hydrodynamics and optics [166] on the one hand. On the other
hand, the analogy between oceanic RW dynamics and pulse propagation in optics, is based on
the central role of NLS equation. As shown by A. R. Osbone, the NLS equation describes the
evolution of light pulse envelope, modulating an electric field in optics, and the evolution of a
group envelope, modulating the surface waves, in deep water. See Fig. 3

Figure 3: The NLSE describes evolution in a frame of reference moving at the group velocity of: (a) wave group envelopes
u on deep water; (b) light pulse envelopes A in optical fibre with anomalous GVD. The figures illustrate solitons on
finite background (top) and solitons on zero background (bottom). For the ocean wave case, there is always deep water
underneath u(z, t). For the water wave NLSE, k0 is the wavenumber m−1, ω0 is the carrier frequency

[
rad s−1

]
; for the

fibre NLSE, β2 < 0 is the GVD
[
ps2m−1

]
, γ is the nonlinear coefficient in

[
w−1m−1

]
. A water wave NLSE with time

and space interchanged is also encountered but in this case the coefficients need to be adapted [58].
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Yet, it has been shown that this clear analogy based on standard NLS equation becomes
uncertain with extended NLS models. This rigorous standard of analogy between oceanic and
optical RWs is influenced by higher-order effects of extended NLS equation.

1.4.2 Experimental generation of rogue wave in optical fibers

As confirmed by Solli et al. [19] and very recently by Suret et al. [167], the critical challenge
in observing optical rogue waves is the lack of real-time instruments that can capture a large
number of very short random events in a single shot. To solve this problem, Solli and co-workers
have used a real-time detection technique in which the group-velocity dispersion (GVD) is used
to stretch the waves temporally so that many thousands of random ultrashort events will
be captured in real time. By using that technique, they find significant fraction of extreme
waves among the large number of events, thus allowing the first observation of optical RWs.
In their experiments, they used a supercontinuum radiation, which is generated by sending
seed picosecond pulses at 1,064nm through a length of highly nonlinear microstructured optical
fiber with matched zero-dispersion wavelength. Then, the output is red-pass filtered at 1,450nm
and stretched for many thousands of events to be captured with high resolution in a single-
shot measurement. So doing, they found that the vast majority of events were so weak and
concentrated in a small number of bins. However, the most extreme ones were thirty to forty
times the average intensities, displaying a clear L-shape profile. These characteristics are the
main features of RW events. The setup and the histograms of the experiment is presented in
Fig. 4.

From the standard NLS equation was found the RW prototypes of finite background such
as the Peregrine solitons (PS), the Kuznetsov-Ma (KM) soliton and the Akhmediev breathers
(ABs). These RW prototypes have been generated from coherent and deterministic means, non-
stochastic initial conditions in optical fibers. Later, there have been observed in experiments
from femtosecond to picosecond range. Therefore, an adequate method for the precise obser-
vation of their propagation was a very big challenge. However, the methodology of intensity
autocorrelation and frequency-resolved optical gating have been used in experiments by Kibler
et al. to observe the dynamics of PS in 2010 [127] and KM soliton, in 2012 [40]. The ABs obser-
vation in picosecond range was made possible by Frisquet and co-workers [168] in 2013. In spite
of these observations in optical fibers, the methods used were restricted to obey to the periodic
wave propagation and not to the non-periodic random waves. As consequence, many experi-
ments were devoted in single-mode fiber to provide single short observations of RW structures.
As results, direct observation of spatial structures of intensity profile was made possible with
camera [37, 38, 169] and the single shot observation of RWs was evidence, but, not provided
through the spectral filtering [19, 170, 171] and statistical measurement techniques [151], in fast
time scales of fluctuations involving picosecond range. So far, the evidence of the single shot
observation via the statistical measurement, was performed with photodetectors [105]. In spite
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Figure 4: Experimental observation of optical rogue waves. (a), Schematic of experimental apparatus. (b-d), Single-shot
time traces containing roughly 15, 000 pulses each and associated histograms (bottom of figure: left, (b); middle, (c);
right, (d) for average power levels 0.8µW (red), 3.2µW (blue) and 12.8µW (green), respectively. The grey shaded area
in each histogram demarcates the noise floor of the measurement process. In each measurement, the vast majority of
events (> 99.9% for the lowest power) are buried in this low intensity range, and the rogue events reach intensities of at
least 30 − 40 times the average value. These distributions are very different from those encountered in most stochastic
processes [19].

of these evidence progress in optic experiments, the real-time and single short observation in
picosecond time scale of RW structures, generated from the nonlinear propagation of random
waves, remain so far unknown. Nevertheless, the direct single shot recordings of optical RWs
was first evidence with time lens by B. H. Kolner and M. Nazarathy [172], then by Bennett and
Kolner [173] with time microscope (TM) and finally by Foster and co-workers with the ultrafast
optical oscilloscope [174]. Very recently, P. Suret et al. [167] have performed the observation of
the fast dynamics of integrable turbulence related to optical RWs with temporal resolution of
250fs of TM. So doing, they observed a frequent emergence of subpicosecond structures with
peak powers much higher than the average of optical random waves. Therefore, their result was
in accordance with the well-known principle of generation of integrable turbulence via initial
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conditions in the form of random waves and Gaussian statistics. As it is well-known that heavy
tail deviations issue from Gaussian statistics occur in integrable turbulence, they are responsi-
ble of usual RW generation in optical fibers. An overview of experimental observation of fast
dynamics and ultrafast observation of RWs with a TM is displayed respectively in [Figs. 5 and
6]

Figure 5: Overview of experiments. (a) Global strategy for the experimental observation of the fast dynamics. Inco-
herent light from a 1560nm Amplified Spontaneous Emission (ASE) source is filtered by using a Programmable Optical
Filter (POF) and amplified before experiencing nonlinear propagation in a polarization maintaining fibre. Single-shot
measurement of random light is achieved by using a specially designed time-microscope (TM). The TM, which maps
the temporal evolution onto the spatial coordinate of a sCMOS camera (Scientific CMOS), has a temporal resolution of
250fs (see Fig. 7 and Methods for details). (b-e) Typical single-shot recordings of the fast dynamics of optical power
(normalized by its mean value). Initial spectral width ∆ν = 0.1THz. (b) Initial condition. (c-e) Structures observed at
the output of the fibre for mean powers ⟨P ⟩ = 0.5W (c), ⟨P ⟩ = 2.6W (d), ⟨P ⟩ = 4W (e) [167].

Despite of some similarity between the optical RW observed in experiments and oceanic RW
observed in the sea, the optic ones could not be observed in deep water because of the breaking
phenomenon. Therefore, the nature of extreme events emerging in the context of random waves,
on the one hand, and in the context of MI, on the other hand, remains an open question.

1.5 Nonlinear propagation of a pulse of light in a fiber

The propagation of light in an optical fiber can be described in two main ways. One denotes,
on the one hand, the geometrical or ray optics approach which can be appropriated to describe
some properties of the fiber, if the diameter of the core where the light propagates, is big enough
compared to the wavelength of the light. On the other hand, as in many cases, it is necessary
to use the electromagnetic theory to describe the set of electromagnetic waves propagating in
the fiber, called the modes of the fiber [175].
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Figure 6: TM realized for the ultrafast observation of optical rogue waves. (a) Experimental setup. A key element is
the time lens, which is composed of the Beta Barium Borate (BBO) crystal, pumped by the stretched 800nm pulse. (b)
Spatial analog of the TM. The dispersion D1 (provided by the grating compressor) is analogue to the diffraction between
the initial image and the lens with focal length f1. The time lens is the analog of the (f1) lens. The singleshot spectrometer
is formally analogue to the far-field camera. G1 and G2 are 600 lines mm−1 gratings, RR is a roof retroreflector. Note
that the BBO crystal is placed at the focal plane of the 200mm collimating lens. Transport optics are not represented
[167].

1.5.1 Wave propagation equation

Like any other electromagnetic phenomenon, the propagation of a pulse of light in a fiber is
governed by Maxwell’s equations. In the International System of Units, Maxwell’s equations
yield [176]

∇ ·D = ρf ,

∇ ·B = 0,

∇× E = −∂B
∂t
,

∇×H = J + ∂D
∂t
,

(1.1)

where E and H are electric and magnetic field vectors, respectively, and D and B are cor-
responding electric and magnetic flux densities. The current density vector J and the charge
density ρf represent the sources for the electromagnetic field. In the absence of free charges in
a medium such as optical fibers, J = 0 and ρf = 0.

The flux densities D and B arise in response to the electric and magnetic fields E and H

propagate inside a Kerr medium and are related to the constitutive relations

D = ε0E + P,

B = µ0H +M,
(1.2)
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where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and P and M are the
induced electric and magnetic polarizations. In a nonmagnetic medium such as optical fibers,
M= 0. Maxwell’s equations can be used to obtain the wave equation that describes light
propagation in optical fibers. The substitution of Eq. (1.2) into Eqs. (1.1), gives

∇×∇× E = − 1

c2
∂2E

∂t2
− µ0

∂2P

∂t2
, (1.3)

where c is the speed of light in vacuum with µ0ε0 = 1/c2 and P the polarization.
It is well-known in the literature that the response of any dielectric to light becomes nonlinear

for intense electromagnetic fields, and optical fibers are no exception. The origin of nonlinear
response is related to an anharmonic motion of bound electrons under the influence of an
applied field. As consequence, the total polarization P induced by electric dipoles is nonlinear
in the electric field E, and satisfies the relation

P (r, t) = ε0
(
χ(1)E (r, t) + χ(2)E (r, t) + χ(3)E (r, t) + · · ·

)
, (1.4)

where the linear susceptibility χ(1) is responsible for the linear effects included through the re-
fractive index n and the attenuation coefficient α. The second-order susceptibility χ(2), is respon-
sible for nonlinear effects such as the second-harmonic generation (SHG) and sum-frequency
generation [177]. However, χ(2) vanishes in optical fibers made of silica glasses (SiO2) which
lack an inversion symmetry at the molecular level. The third-order susceptibility χ(3), as re-
gards, is the lowest-order nonlinear effects in optical fibers, responsible for the third-harmonic
generation (THG), four-wave mixing (FWM), and nonlinear refraction [177]. Therefore, Eq.
(1.4) can be written as

P (r, t) = PL (r, t) + PNL (r, t) , (1.5)

where

PL (r, t) = ε0
t∫

−∞
χ(1) (t− t′) · E (r, t′) dt′,

PNL (r, t) = ε0
t∫

−∞
dt1

t∫
−∞

dt2
t∫

−∞
dt3

×χ(3) (t− t1, t− t2, t− t3)
...E (r, t1)E (r, t2)E (r, t3) .

(1.6)

Therefore, Eq. (1.3) takes the form

∇2E − 1

c2
∂2E

∂t2
= µ0

∂2PL
∂t2

+ µ0
∂2PNL
∂t2

. (1.7)

Let start with the resolution of Eq. (1.7) with PNL = 0. It is useful to write E in the frequency
domain as

∇×∇× Ẽ (r, ω) = ε(ω)
ω2

c2
Ẽ (r, ω) , (1.8)
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where Ẽ (r, ω) is the Fourier transform of E(r, t) defined as

Ẽ (r, ω) =

+∞∫
−∞

E (r, t) exp(iωt)dt, (1.9)

and the frequency-dependent dielectric constant stands for

ε(ω) = 1 + χ(1) (ω) , (1.10)

where χ(1) (ω) is the Fourier transform of χ(1) (t). As χ(1) (ω) is in general complex, so is ε(ω)
which can be written in a real and imaginary parts, related to the refractive index n(ω) and
the absorption coefficient α(ω) as follows

ε = (n+ iαc/2ω)2, (1.11)

where n and α take the forms

n(ω) = 1 +
1

2
Re
[
χ(1) (ω)

]
, α(ω) =

ω

nc
Im
[
χ(1) (ω)

]
, (1.12)

where Re and Im stand for the real and imaginary parts, respectively. Due to low optical losses
in fibers (i.e. ε(ω) ≈ n2 ) on the one hand, and to the independence in spatial coordinates of
n in both core and cladding of step-index fibers (i.e (∇ · E) = 0) on the other hand, Eq. (1.8)
takes the form of the Helmholtz equation

∇2Ẽ + n2 (ω)
ω2

c2
Ẽ = 0. (1.13)

As the wave propagation equation has been derived in the linear approximation (PNL = 0), let
consider the case where PNL ̸= 0 to find the nonlinear propagation equation.

1.5.2 Nonlinear Pulse propagation equation

The study of nonlinear effects in optical fibers involves the use of short pulses with widths
ranging from approximately 10ns to 10fs. When such optical pulses propagate inside a fiber,
both dispersive and nonlinear effects influence their shapes and spectra. In this case, PNL ̸= 0

and the equation that describes light propagation in optical fibers takes the form

∇2E − 1

c2
∂2E

∂t2
= µ0

∂2PL
∂t2

+ µ0
∂2PNL
∂t2

. (1.14)

To derive the basic equation that governs propagation of optical pulses in nonlinear dispersive
fibers, some assumptions are necessary [68].
First assumption: The PNL should be treated as a small perturbation toPL.

Second assumption: The optical field is assumed to maintain its polarization along the fiber

length so that a scalar approach is valid.
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Third assumption: The optical field is assumed to be quasi-monochromatic, i.e., the pulse

spectrum, centered at ω0, is assumed to have a spectral width ∆ω such that ∆ω/ω0 << 1.
In the paraxial approximation (i.e. slowly varying envelope approximation), it is useful to

separate the rapidly varying part of the electric field and polarization components by writing
them in the form

E (r, t) = 1
2
x̂ [E (r, t) exp (−iω0t) + c.c.] ,

PL (r, t) =
1
2
x̂ [PL (r, t) exp (−iω0t) + c.c.] ,

PNL (r, t) =
1
2
x̂ [PNL (r, t) exp (−iω0t) + c.c.] ,

(1.15)

where x̂ is the polarization unit vector, and E(r, t) is a slowly varying function of time (relative
to the optical period). Therefore, the nonlinear polarization PNL can be reduced to

PNL (r, t) ≈ ε0εNLE (r, t) , (1.16)

where the nonlinear contribution to the dielectric constant is

εNL =
3

4
χ(3)
xxxx|E (r, t)|2. (1.17)

To obtain the wave equation for the slowly varying amplitude E(r, t), it is more convenient
to work in the Fourier domain. So doing, E(r, t) defined as

Ẽ (r, ω − ω0) =

+∞∫
−∞

E (r, t) exp [i (ω − ω0) t] dt, (1.18)

is found to satisfy the Helmholtz equation below

∇2Ẽ + ε(ω)k20Ẽ = 0, (1.19)

with
ε(ω) = 1 + χ̃(1)

xx (ω) + εNL, k0 =
ω

c
. (1.20)

Therefore, the refractive index ñ and the absorption coefficient α̃ become

ñ = n+ n2|E|2, α̃ = α + α2|E|2, (1.21)

For ε = (ñ+ iα̃/2k0)
2, the nonlinear-index coefficient n2 and the two-photon absorption coef-

ficient α2 yield

n2 =
3

8n
Re
(
χ̃(3)
xxxx

)
, α2 =

3ω0

4nc
Im
(
χ̃(3)
xxxx

)
. (1.22)

One should keep in might that α2 is relatively small in silica fibers, and is often ignored.
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1.5.3 Nonlinear Schrödinger equation

Equation (1.19) can be solved by using the method of separation of variables [68]. Let assume
that the solution has the form

Ẽ (r, ω − ω0) = F (x, y) Ã (z, ω − ω0) exp (iβ0z) , (1.23)

where Ã (z, ω) is a slowly varying function of z and β0, the wave number.
Equation (1.19) leads to the following two equations in the case of nonparaxiality

∂2F
∂x2

+ ∂2F
∂y2

+
[
ε(ω)k20 − β̃2

]
F = 0,

∂2Ã
∂z2

+ 2iβ0
∂Ã
∂z

+
(
β̃2 − β2

0

)
Ã = 0.

(1.24)

In the case of paraxial approximation, one neglects the second derivative ∂2Ã
∂z2

since Ã (z, ω) is
assumed to be a slowly varying function of z. It follows that

∂2F
∂x2

+ ∂2F
∂y2

+
[
ε(ω)k20 − β̃2

]
F = 0,

2iβ0
∂Ã
∂z

+
(
β̃2 − β2

0

)
Ã = 0,

(1.25)

where F (x, y) is the modal distribution and β(ω) the corresponding wave number. In a single-
mode fiber, F (x, y) refers to the modal distribution of the fundamental fiber mode.

Let consider the above approximation of the dielectric constant ε(ω)

ε = (n+∆n)2 ≈ n2 + 2n∆n, (1.26)

where the small perturbation ∆n takes the form

∆n = n2|E|2 +
iα̃

2k0
. (1.27)

The first-order perturbation theory [10] has been used to determine the wave number β̃

β̃ (ω) = β (ω) + ∆β (ω) , (1.28)

where

∆β (ω) =
ω2n (ω)

c2β2 (ω)

∫ +∞∫
−∞

∆n (ω) |F (x, y)|2dxdy

∫ +∞∫
−∞

|F (x, y)|2dxdy
. (1.29)

It follows that the electric field E(r, t) can be written as

Ẽ (r, ω) =
1

2
x̃ {F (x, y)A (z, t) exp [i (β0z − ω0t)] + c.c} , (1.30)
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where A(z, t) is the slowly varying pulse envelope. Its Fourier transform satisfies Ã(z, ω − ω0)

Eq. (1.25) as follows
∂Ã

∂z
= i [β (ω) + ∆β (ω)− β0] Ã. (1.31)

During the propagation in the fiber, each spectral component acquires a phase shift whose
magnitude is both frequency and intensity dependent. To obtain the propagation equation for
A(z, t), let take the inverse Fourier transform of Eq. (1.31). It is helpful to expand β (ω) and
∆β (ω) in a Taylor series around the carrier frequency ω0 as

β (ω) = β0 + (ω − ω0) β1 +
1
2
(ω − ω0)

2β2 +
1
6
(ω − ω0)

3β3 + · · · ,

∆β (ω) = ∆β0 + (ω − ω0)∆β1 +
1
2
(ω − ω0)

2∆β2 + · · · ,
(1.32)

where, β0 ≡ β (ω0) and ∆β ≈ ∆β0, with

βm =

(
dmβ

dωm

)
ω=ω0

, (m = 1, 2, ...). (1.33)

In Eqs. (1.32), the cubic and higher-order terms are negligible if the spectral width of the pulse
satisfies the condition ∆ω << ω0. Considering the inverse Fourier transform

A (z, t) =
1

2π

+∞∫
−∞

Ã (z, ω − ω0) exp [−i (ω − ω0) t]dω, (1.34)

the resulting equation for A(z, t) becomes

∂A

∂z
+ β1

∂A

∂t
+
iβ2
2

∂2A

∂t2
= i∆β0A, (1.35)

where ∆β0 includes the effects of fiber loss and nonlinearity. Using β (ω) ≈ n (ω)ω/c and
assuming that the variation of F (x, y) over the pulse bandwidth is small, Eq. (1.35) takes the
form

∂A

∂z
+ β1

∂A

∂t
+
iβ2
2

∂2A

∂t2
+
α

2
A = iγ (ω0) |A|2A. (1.36)

where the nonlinear parameter γ is defined as

γ (ω0) =
n2 (ω0)ω0

cAeff
, (1.37)

where the parameter Aeff is known as the effective mode area and is defined as

Aeff =

(∫ +∞∫
−∞

|F (x, y)|2dxdy
)2

∫ +∞∫
−∞

|F (x, y)|4dxdy
. (1.38)

Equation (1.36) describes the propagation of picosecond optical pulse in single-mode fibers
and is related to the NLS equation under certain conditions [68]. Equation (1.36) governs some
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nonlinear effects such as the fiber losses through the parameter α, the chromatic dispersion
through the terms β1 and β2 and the SPM nonlinearity through the coefficient γ . The pulse
envelope moves at the group velocity vg ≡ 1/β1, while the effects of group-velocity dispersion
(GVD) are governed by β2. The GVD parameter β2 can be positive or negative depending on
whether the wavelength λ is below or above the zero-dispersion wavelength λD of the fiber. In
the anomalous-dispersion regime, (λ > λD), β2 is negative, and positive in the focusing regime.
The term proportional to β1 is canceled when transforming to a reference frame moving with
the pulse at the group velocity, by applying the change of variable T = t− z/vg ≡ t− β1z.

i
∂A

∂z
+ i

α

2
A− β2

2

∂2A

∂T 2
+ γ|A|2A = 0. (1.39)

If the absorption is neglected (α = 0), the usual form of the NLSE stands

i
∂A

∂z
− β2

2

∂2A

∂T 2
+ γ|A|2A = 0. (1.40)

Equation (1.40) is the standard NLS equation.

1.6 Nonlinear effects in optical fibers

1.6.1 Attenuation

From the beginning, telecommunication systems based on optical fiber were constructed in
the assumption of linear transmission. Nevertheless, optical transmissions with high debit and
far distances newly constructed are connected to powerful amplifier of emission which induce
very high ejected powers in optical fiber. This ejection is responsible to the generation and
amplification of parasite effects or interference such as linear and nonlinear effects. However,
optical nonlinearity can significantly degrade the information capacity and limit the channel
power in high-speed and long-range optical communications. Nonlinear fiber optics has been
widely investigated in standard fiber systems [178]. In the literature, scientist denote two types
of dispersion mechanisms in the fiber. The intramodal dispersion which is due to the dispersive
properties of the optical fiber material, hence the denomination, material dispersion, on the one
hand. Then, the intermodal dispersion, due to the guidance effects of the optical fiber, hence
the denomination, waveguide dispersion, on the other hand.

In the context of intramodal dispersion, one denote the attenuation which is a linear effect,
frequently observes in single mode fiber. Attenuation effect is the reduction of signal strength
or light power over the length of the light-carrying medium [179]. This fiber attenuation is a
function of wavelength, measured in decibels per kilometer and can be classified in two main
types. The intrinsic losses, such as the infrared (IR) absorption by Si-O coupling [180], observe
at higher wavelengths around 1.4µm to 1.6µm and the ultraviolet (UV) absorption due to
electron transitions, observe at lower wavelengths near to 0.8µm with a loss of 0.3dB/km. As
illustration, Fig. 7 exhibits the spectral attenuation of a silica optical fiber.
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Figure 7: Spectral attenuation of a silica optical fiber [179].

Moreover, attenuation can be caused by other factors, such as the diffusion phenomenon
names, Rayleigh scattering effect, originates from microscopic irregularities in the glass structure
and absorption due to the lattice vibration which can be describes as the conversion process
of electromagnetic wave energy into other forms. The Rayleigh scattering effect is inversely
proportional to λ4 and can be expressed as [181]

αR [dB/km] = 1.7

(
0.85

λ [µm]

)
. (1.41)

The Rayleigh effect produces high losses of 0.6dB/km in the ultraviolet region when the wave-
length is around 0.8µm to 1µm. The above Fig.8 describes the Rayleigh scattering effect.

Figure 8: Illustration of Rayleigh scattering effect [179].

Another factor of attenuation is light absorbtion within the fiber core and inner cladding by
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residual species such as OH ions. Such ions removal are of special interest in fiber fabrication
because this extraction reduces the optical loss thus, the attenuation in the fiber. Figure 9 shows
the spectral attenuation of different material fibers. One denotes another form of attenuation

Figure 9: Spectral attenuation of different material fibers [179].

due to local distortions of the fiber geometry, and nonlinear scattering occurring when installing
fibers.

1.6.2 Chromatic dispersion

The NLSE (1.40) shows that group-velocity dispersion (GVD, β2) and nonlinearity (γ) are
two phenomena playing a major role in the propagation of a pulse of light in a fiber. The
GVD, known as chromatic dispersion, is a linear effect which occurs in optical fiber systems,
particularly on single-mode wavelength-division multiplexing (WDM) systems. This effect is
due to the fact that an optical source contains different wavelength components that travel at
different speeds. An illustration of the chromatic dispersion in optical-fiber nanowire (OFN) is
presented in Fig. 10. The dispersion, function of the optical frequency, is commonly expanded

in Taylor series with dispersion coefficients βn. The Taylor coefficient β2 (ps2/km) is related to
the engineering unit of the GVD, measured in (ps/(nm.km)) and expressed as follows [183]

D =
2πc

λ2
d2β

dω2
. (1.42)

Let us detail independently, the GVD effect on the pulse propagation in solid core fibers
[184] through the NLS equation bellow

i
∂E (z, t)

∂z
− β2

2

∂2E (z, t)

∂t2
+ γ|E (z, t)|2E (z, t) = 0. (1.43)
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Figure 10: Dependence of the GVD on the wavelength for four different OFN diameters [182].

To study the effect of GVD alone, let set γ to zero in Eq. (1.43). Then, it follows

∂E (z, t)

∂z
= −iβ2

2

∂2E (z, t)

∂t2
. (1.44)

Using the gaussian pulse, Eq. (1.44) is solved in the Fourier domain and the result yields

E (z, t) = E1(z) exp

(
− t2

T 2
eff (z)

)
exp (−iϕD (z, t)) , (1.45)

where
E1(z) =

E0

Teff
, Teff = τ

[
1 + (z/LD)

2]1/2, LD = τ 2/ |β2| ,

ϕD (z, t) = −t2β2z
τ4+β2

2z
2 +

1
2
tan−1

(
β2z
τ2

)
,

(1.46)

One remarks that the pulse remains Gaussian but its duration Teff increases during the prop-
agation along z. The instantaneous frequency variation (or chirp) is deduced from the time
derivative of the temporal phase ϕD (z, t) and takes the form

δω (z, t) =
2β2z

τ 4 + β2
2z

2
t. (1.47)

It can be seen that the chirp is a linear time dependence. This means that the GVD induces a
linear chirp on the pulse during its propagation. If β2 is positive (normal dispersion), at t < 0

(i.e. on the leading part of the pulse), then, δω < 0. In the case where t > 0 (i.e. on the trailing
part of the pulse), δω > 0. In other words, this means that, the red travels faster than the blue
(like in the majority of the classical materials). On the contrary, if β2 is negative (anomalous
dispersion), the blue travels faster than the red. Therefore, Teff (z) depends on β2

2 . So, in both
cases, an initially Fourier-transform-limited the pulse broadens during the propagation [184].

In the case of photonic crystal fibers (PCFs) [184], the GVD can be positive or negative
depending on the wavelength. There can be one or several wavelengths for which the GVD is
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zero, namely, the zero-dispersion wavelengths (ZDW). The dispersion curves for two different
PCFs are shown in Fig. 11. As features of PCFs, one denotes one anomalous dispersion range,
two normal dispersion ranges and two ZDW. In addition, the spectrum is not z−dependent,
it stays identical throughout the propagation. As consequence, the only effect of GVD is the
temporal broadening occurring because, the frequencies present in the pulse, travel at different
velocities in the fiber.

Figure 11: Example of group-velocity dispersion for two solid-core PCFs and interpretation for the propagation of the
frequencies in the pulse [184]. Graph: Courtesy of Esben R. Andresen.

The GVD plays an undeniable role in all fiber nonlinear applications, especially in SC gen-
eration [185], which has a very broad frequency spectrum and numerous applications in pulse
compression, parametric amplifiers, SC-based WDM telecom sources, and so on. Among linear
effects which occur in optical fiber systems, scientist denote the mode polarization dispersion. It
can be due to unpredictable and uncontrollable variation of the birefringence and polarization
or to the non homogeneity of the index, an imperfection of the fiber.

1.6.3 Nonlinear effects

A. Self-phase modulation

In the optical Kerr effect, the nonlinear phase shift or self-phase modulation (SPM) induced by
an intense high-power pump beam, is used to change the transmission of a weak probe through a
nonlinear medium. This effect can be used to make an optical shutter with picosecond response
times. For a very intense optical pulse, the fibre refractive index increases as the intensity
of the light increases. Named after a 19th century, the nonlinear effect γ, was discovered by
Scotsman John Kerr in 1875 and has come to be known as the Kerr optical effect or the Kerr
nonlinearity. The higher-order dispersion terms do not affect the spectrum. As discussed in
chromatic dispersion subsection, this is easily seen from the fact that the dispersion amounts to
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multiplication of eiϕ(ω) onto Ẽ(ω). The exponential cancels out upon taking the squared norm∣∣∣Ẽ(ω)∣∣∣2 to arrive at the spectrum. Figure 12 exhibited the features of GVD and SPM.

Figure 12: Separate effects of (a) GVD and (b) SPM on an unchirped Gaussian pulse propagating in a fiber along
direction z. (a) The spectrum stays unchanged, but the pulse temporally broadens when it propagates. The GVD-
induced chirp is linear. The scheme was drawn for β2 > 0, so the chirp is positive and the red wavelengths go faster than
the blue ones. If β2 < 0, the pulse broadens in the same way, but the chirp is negative and the blue goes faster than the
red. (b) The temporal profile stays unchanged, but SPM generates new frequencies, and the spectrum broadens. The
chirp has the shape of the derivative of a Gaussian and its amplitude increases when the pulse propagates. Because of this
shape, one frequency can be traveling with two different phases, which can cause constructive or destructive interference,
hence the oscillating pattern of the spectrum. The three examples of spectra drawn on the scheme correspond to three
values of the maximum nonlinear phase (1.5π, 2.5π and 3.5π). As the spectrum broadens, the Fourier-transform-limited
duration of the pulse decreases, but the actual duration of the pulse stays unchanged because of the chirp [184].

The nonlinearities in the fiber cause a change of refractive index in the medium that is
proportional to |E|2. This phenomenon is called "optical Kerr effect", because of its similarities
to the Kerr electro-optic effect, where an electric field is applied to a medium and changes its
refractive index in a quadratic way.

As already defined in the previous section, the nonlinear coefficient can be written as

γ =
n2ω0

cAeff
, (1.48)

where n2 is the nonlinear refractive index such as ∆n = n2|E|2. To study the effect of SPM
alone, β2 is set to zero in the NLS equation (1.43). Thus, Eq. (1.43) becomes

∂E (z, t)

∂z
= iγ|E (z, t)|2E (z, t) . (1.49)

When solved in the time domain, Eq. (1.49) gives the result bellow

E (z, t) = E (0, t) exp (ϕNLt) , (1.50)

29



where
ϕNL = γ|E (0, t)|2z, E (0, t) = E0 exp

(
−t2

(2τ 2)

)
. (1.51)

The temporal phase ϕNL that is imposed on the pulse is intensity dependent and reaches its
maximum at t = 0 and its shape follows the Gaussian profile of the pulse in the time-domain.

The nonlinear length LNL can be defined such as ϕNL(t) = z/LNL, with LNL = 1/γP0.
Then, the derivative of the phase gives the instantaneous frequency

δω (z, t) =
2γP0z

τ 2
te−t

2/τ2 . (1.52)

Eq. (1.52) describes the nonlinearity effect, called, self-phase modulation (SPM) [184]. The
change of refractive index induced by the intense optical electric field perturbs the propagation
of the pulse. In silica fibers, the nonlinear index n2 > 0. So, δω < 0 for t < 0 at the leading
edge (i.e., the right side of the pulse) and δω > 0 for t > 0 at the trailing edge. As in the case
of GVD for normal dispersion, the red part of the spectrum goes overall faster than the blue
part. However, the dependence is far from being linear as it has the shape of the derivative of a
Gaussian. Thus, new frequencies are continuously created during the propagation of the pulse.
The resulting spectrum for unchirped Gaussian pulse experiencing SPM consists of several
peaks that appear because each frequency can be generated with two different phases, causing
interferences. An estimation of the broadening can be made with Eq. (1.52). As observed in
Fig. 12(b), the spectral width can roughly be estimated by δωmax in the chirp graph or by
calculating the time derivative of Eq. (1.52) and setting it to zero. So doing, it yields

δωmax =
√
2e

−1/2
γP0z
T0 . (1.53)

One can notice that |E (z, t)|2 = |E (0, t)|2 is not z-dependent. Therefore, the pulse does not
get broader or narrower when it propagates. However, as the spectrum broadens, the Fourier-
transform-limited duration of the pulse decreases, and one would recover the shorter pulse by
compensating the chirp induced by SPM.

The above analytical results can only be apply to Gaussian pulses. However, the qualitative
conclusions stand for any pulse shape. Any temporal pulse shape will remain unchanged under
the action of SPM alone. Indeed, the SPM amounts to multiplication of eiγt onto E (z, t) and this
factor disappears upon taking the squared norm of E (z, t). Figure 12(b) revealed the features of
SPM. If the input pulse is initially chirped, the resulting spectrum can be drastically changed.
In particular, under some conditions, a negatively chirped pulse experiencing SPM in a fiber
can result in spectral compression [186].

In summary, the GVD and SPM act on the pulse propagating in optical fibers and their
effects cannot be separated. The interplay between the GVD and SPM, can be revealed through
the parameter N which yields

N2 =
LD
LNL

=
γP0T

2
0

|β2|
. (1.54)
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If N >> 1, the dispersion length is much longer than the nonlinear length, so SPM dom-
inates. On the contrary, if N << 1, GVD dominates. If N = 1 and β2 > 0, some temporal
broadening appears, and the spectral broadening is reduced compared to the SPM-only case
(see Fig. 12(b)). Throughout Fig. 12(b), it can be seen that the SPM generate new red frequen-
cies at the leading edge, and new blue frequencies created at the trailing edge. Thus, because
of the positive dispersion, the leading red components travel faster than he already delayed
blue components, which results in an extra temporal broadening. That helps thinking that the
chirp created by GVD lowers the amplitude of the one created by SPM. Therefore, the result-
ing maximum nonlinear phase is reduced and the spectrum broadening is slowed down [184].
If N = 1 and β2 < 0, the opposite situation may occurs. The red components created at the
leading edge are going slower and the blues components created at the trailing edge act against
the temporal broadening of the pulse. Furthermore, the negative chirp induced by GVD acts
against the spectral broadening caused by SPM. In this case, the combined effects of GVD and
SPM generate the "soliton" or a "chirp-free pulse" ( i.e. solitary wave, solution of a nonlinear
equation) which can propagate in the fiber without changing its shape and velocity.

B. Third-order dispersion

When optical pulses propagate relatively far from the zero-dispersion wavelength of an optical
fiber, the TOD effects on pulses are small and can be treated perturbatively. It is well-known
that the dispersion-induced pulse broadening is due to the lowest-order of GVD term propor-
tional to β2 in Eq. (1.32). Although the contribution of this term dominates in most cases of
practical interest, it is sometimes necessary to include the third-order dispersion (TOD) gov-
erned by β3. For example, if the pulse wavelength nearly coincides with the zero-dispersion
wavelength λD and β2 ≈ 0, the β3 term provides the dominant contribution to the GVD effects
[189]. For ultrashort pulses (with width T0 < 1ps), it is necessary to include the β3 term even
when β2 ̸= 0 because the expansion parameter ∆ω/ω0 is no longer small enough to justify the
truncation of the expansion in Eq. (1.32) after the β2 term.

To discuss the effect of TOD on optical fibers, one may choose the model below [187]

iuZ +
1

2
uττ + |u|2u = iδ3uτττ , (1.55)

where δ3 is the third-order dispersion coefficient with

τ = T/T0, Z = z/LD, u =
√
γLDU, LD = T 2

0 / |β2| . (1.56)

For the initial condition with unit amplitude u (0, τ) = sech τ , the simulation of Eq. (1.55) with
δ3 = 0.1 is displayed in Fig. 13. It is seen that the third-order dispersion causes a position shift
to the soliton. More significantly, a high-frequency continuous-wave (CW) tail approximately at
1/2δ3 (frequency peak) appears on the trailing edge (right side) of the soliton (see Fig. 13(b)).
Then, the emission of this CW tail drains energy from the soliton and causes it to decay. Figure
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Figure 13: Amplitude and spectrum of an NLS soliton under third-order dispersion effect at z = 15 with the initial
condition, u (0, τ) = sech τ , and TOD coefficient δ3 = 0.1. [187].

13 exhibits the amplitude and spectrum of the solution at z = 15. Regarding the high-frequency
CW tail emitted at the trailing edge of the soliton, it originates from a resonance between the
soliton and the continuous spectrum of the system. This happens because the energy is fed
into the resonant frequency mode ωc = 1/2δ3 and thus, a CW tail with this frequency appears.
Moreover, this phenomenon is due to the fact that the amplitude of the CW tail turns out to
be exponentially small in δ3.

To summarize, the main effect of TOD is to shift the soliton peak linearly with distance z.
Whether the pulse is delayed or advanced depends on the sign of β2. When β3 is positive, the
TOD slows down the soliton, and the soliton peak is delayed by an amount that increases lin-
early with distance. This TOD-induced delay is negligible in most fibers for picosecond pulses.
If we use a typical value of β3 = 0.1ps3/km, the temporal shift is only 0.1ps for T0 = 10ps even
after a distance of 100km. However, the shift becomes relatively large for femtosecond pulses.
For example, when T0 = 100fs, the shift becomes 1ps after 1km.

C. Self-steepening

Now let consider the NLS equation under the self-steepening (SS) effect [187]

iuZ +
1

2
uττ + |u|2u = −is

(
|u|2u

)
τ
, (1.57)

with the same nondimensional variables (1.56). In the absence of the second-order dispersion
term uττ , the self-steepening term on the right-hand side of Eq. (1.57) causes an optical pulse to
become asymmetric and steepen up at the trailing edge (i.e., the right side of the pulse) [188].
The second-order dispersion reduces this SS considerably. To illustrate the SS effect, let take
as initial condition, a sech pulse with unit amplitude, u (0, τ) = sech τ , and the SS coefficient,
s = 0.2. The evolution of the pulse under the SS effect is numerically determined and displayed
in Fig. 14.
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Figure 14: Evolution of an NLS soliton under self-steepening effect with the initial condition, u (0, τ) = sech τ and SS
coefficient, s = 0.2 [187].

It is seen that the main effect of the self-steepening term is a position shift of the soliton.
This position shift linearly increases with distance. The most important feature of SS is that it
can produce spectral and temporal shifts of the soliton even when the SS coefficient is nil [188].
In the literature, it is well-known that the NLS equation with the self-steepening in the form
(1.57), is integrable for arbitrary values of the SS coefficient.

D. Self-frequency shift

The NLSE with higher-order effects can be written as [190]

∂E

∂z
+
i

2
β2
∂2E

∂t2
− iγ|E|2E =

∞∑
p=2

−(i)p−1

p!

∂pE

∂tp
− γ

ω0

∂

∂t

(
|E|2E

)
− iγTRE

∂|E|2

∂t
, (1.58)

where the parameter TR is related to the full Raman response function of the medium R(t), that
takes into account the electronic (instantaneous) and vibrational (delayed) Raman response

TR =

+∞∫
−∞

tR(t)dt. (1.59)

The intrapulse Raman scattering known as the self-frequency shift (SFS) is the most important
higher-order effect that influences pulses in optical fibers. The SFS takes it origins from the
delayed Raman response of the medium. When the pulse is very short (typically ≈ 100 fs), its
spectrum is broad enough to generate an effect similar to stimulated Raman scattering that
can occur between the blue and the red components, mediated by the vibration modes of silica.
More specifically, the red part of the spectrum experiences a Raman gain, while the blue part
experiences a Raman loss. This effect can be considered as an energy transfer between the blue
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and the red part of the spectrum [184]. Therefore, the soliton continuously redshifts along its
propagation in the fiber as shown in Fig. 15. This phenomenon is called soliton SFS [191].

Figure 15: Example of increasing soliton redshift with increasing input power. The peak at 800 nm is the residue from
the pump laser [184].

An estimation of the variation of the central frequency of the soliton yields

∆ωR ∝ −|β2| z
T 2
0

, (1.60)

where P0 is the peak power of the pulse and T0, its duration. As consequence, the redshift
increases proportionally with the distance traveled in the fiber (i.e., the longer is the fiber, the
higher is the final redshift at the output). In addition, when more power is injected into the
fiber, the duration of the pulse decreases by the means of this relation γP0T

2
0 / |β2| = 1. The

redshift is proportional to T−4
0 and any small decrease of the duration of the pulse translates to

an enhancement of the redshift. Thus, the wavelength of the soliton can be tuned by changing
the input power, while the duration of the pulse remains almost constant.

To summarize, it is important to note that femtosecond higher-order pulses are not stables
because of the combined effects of higher-order dispersion, SS and SFS, which leads to the
breakup of these pulses into optical fibers. This phenomenon is known as the soliton decay (see
Fig. 15).

E. Cross-phase modulation

Only a single electromagnetic wave is assumed to propagate inside a single mode fibers. When
two or more optical fields, having different wavelengths propagate simultaneously inside a fiber,
they interact with each other through the fiber nonlinearity. The XPM can be described by the
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following model
∂u1
∂ξ

− d1
2
∂2u1
∂τ2

+
(
|u1|2 + σ|u2|2

)
u1 = 0,

∂u2
∂ξ

+ d1
2
∂2u2
∂τ2

+
(
|u2|2 + σ|u1|2

)
u2 = 0,

(1.61)

where dj = |β2j/β20|. The parameter β20 is the reference value used to define the dispersion
length, and u1 is assumed to propagate in the normal-dispersion region. The parameter σ has a
value of 2 when all waves are linearly polarized but becomes <1 for orthogonally polarized waves.
In general, such an interaction can generate new waves under appropriate conditions through
a variety of nonlinear phenomena such as stimulated Raman scattering (SRS) or stimulated
Brillouin scattering (SBS), harmonic generation, and FWM. The Kerr nonlinearity can also
couple two optical fields through cross-phase modulation (XPM) without inducing any energy
transfer between them. In practice, XPM always accompanies SPM when two or more optical
fields are launched simultaneously into an optical fiber. From a physical perspective, XPM
occurs because the effective refractive index seen by an optical beam in a nonlinear medium,
depends not only on the intensity of that beam, but also on the intensity of other copropagating
beams [192].

Figure 16: Spectra of two pulses exhibiting XPM-induced asymmetric spectral broadening. The parameters are γ1P1L =

40, P2/P1 = 0.5, γ2/γ1 = 1.2, τd = 0, and L/LW = 5 [188].

Application of XPM
The nonlinear phenomenon of XPM can be both beneficial and harmful. Its most direct impact
is related to multichannel lightwave systems whose performance is invariably limited by the
XPM interaction among neighboring channels. Such systems are also affected by the so-called
intrachannel XPM, resulting from overlapping of neighboring pulses belonging to the same
channel [193]. This section is devoted to the beneficial applications of XPM such as pulse
compression and optical switching.
XPM-Induced Pulse Compression
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It is well-known that the SPM-induced chirp can be used to compress optical pulses [190].
Because XPM also imposes a frequency chirp on an optical pulse, it can be used for pulse
compression as well [194]. An obvious advantage of XPM-induced pulse compression is that, in
contrast to the SPM technique requiring the input pulse to be intense and energetic, XPM can
compress weak input pulses because the frequency chirp is produced by a copropagating intense
pump pulse. However, the XPM-induced chirp is affected by the walk-off effects and depends
critically on the initial relative pump-probe delay. As result, the practical use of XPM-induced
pulse compression requires a careful control of the pump-pulse parameters such as its width,
peak power, wavelength, and initial delay relative to the probe pulse.

Figure 17: Pulse shapes for the pump and probe at a distance z/LD = 0.2. The dashed curves show for comparison
input pulse shapes at z = 0. XPM-induced pulse compression is realized using pump pulses of peak power such that
N = 10 [188].

XPM-Induced Optical Switching
The XPM-induced phaseshift can also be used for optical switching [190]. Several interferomet-
ric schemes have been used to take advantage of XPM for ultrafast optical switching [195]. The
physics behind XPM-induced switching can be understood by considering a generic interferom-
eter designed such that a weak signal pulse, divided equally between its two arms, experiences
identical phase shifts in each arm and is transmitted through constructive interference. If a
pump pulse at a different wavelength is injected into one of the arms of the interferometer, it
would change the signal phase through XPM in that arm. If the XPM-induced phase shift is
large enough (close to π), the signal pulse will not be transmitted because of the destructive
interference occurring at the output. Thus, an intense pump pulse can switch the signal pulse
through the XPM-induced phase shift.

F. Four-wave mixing

Optical fibers play an important role in the stimulated scattering processes [188]. Their actions
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can be active or passive depending on nonlinear processes in the system. They play an active
role in the sense that the process depends on molecular vibrations or density variations of sil-
ica. In the parametric processes, except for mediating interaction among optical waves, optical
fibers play a passive role in the sense that, they involve modulation of a medium parameter,
such as the refractive index, and require phase-matching before they can build up along the
fiber. Among these, FWM plays the dominant role. Although FWM can be harmful for WDM
systems that must be designed to reduce its impact, it is also useful for a variety of applications.

The origin of Four-wave mixing (FWM) lies in the nonlinear response of bound electrons of
a material to an electromagnetic field. In the literature, it is well-known that the polarization
induced in optical fiber media contains terms, whose magnitude is governed by the nonlinear
susceptibilities [188]. The resulting nonlinear effects can be classified as second- or third-order
parametric processes, depending on the level of susceptibility (second-order susceptibility χ(2),
or third-order susceptibility χ(3)), responsible of their generation. Generally, the second-order
susceptibility χ(2) vanishes in isotropic medium (in the dipole approximation) and as conse-
quence, the second-order processes such as second-harmonic generation should not occur in
silica fibers. But, in practice, they do occur with a relatively low conversion efficiency, due to
the quadrupole and magnetic-dipole effects.

As an example of FWM, Fig. 18 exhibited the spectra at the fiber output as the pump peak
intensity is increased above the FWM threshold occurring near 500 MW/cm2. Only the pump
line is observed below threshold (see Fig. 18 (a)). Three pairs of Stokes and anti-Stokes lines
with frequency shifts in the range 1 − 8 THz are observed just above threshold (see Fig. 18
(b)). All of these lines have nearly the same amplitude, indicating that the stimulated Raman
scattering (SRS) does not play a significant role at this pump power. As pump power is slightly
increased, the Stokes lines become much more intense than the anti-Stokes lines as a result
of Raman amplification (see Fig. 18 (c)). With a further increase in pump power, the Stokes
line closest to the Raman-gain peak becomes as intense as the pump line itself whereas the
anti-Stokes lines are nearly depleted (see Fig. 18 (d)).

As applications, the FWM in optical fibers can be both harmful and beneficial depending on
the application [188]. One the one hand, The FWM can induce crosstalk in WDM communica-
tion systems and limit the performance of such systems. The FWM-induced crosstalk can be
avoided in practice through dispersion management, a technique in which the dispersion of each
fiber section is made large enough that the FWM process is not phase matched throughout the
link length [188]. One the other hand, the FWM is useful for a variety of applications. The fibre
optical parametric amplifiers (FOPAs) can be employed for signal amplification, phase conjuga-
tion, and wavelength conversion. In addition to these, FWM can be useful for applications such
as optical sampling, channel demultiplexing, pulse generation, and high-speed optical switching
[188]. It can also be used for reducing quantum noise through squeezing, and for generating
photon pairs that are quantum-correlated.
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Figure 18: Spectra of 25−ps pump pulses at fiber output. The peak intensity is increased progressively beyond the
FWM threshold (≈ 500 MW/cm2) in going from (a) to (d) [188].

1.7 Scientific progress of optical rogue wave field

1.7.1 Concordance of different methods on rogue waves generation

Let consider the dimensionless NLS equation below

i
∂ψ

∂ξ
+

1

2

∂2ψ

∂τ 2
+ |ψ|2ψ = 0, (1.62)

where ψ(ξ, τ) is a function of ξ (propagation distance) and τ (co-moving time). Equation (1.62)
can be used to describe the dynamics of pulses in optical fiber as represented in Fig. 3 with
the timescale T0 = (|β2|LNL)1/2 and nonlinear length LNL = (γP0)

−1, where P0 is the optical
background power in Watt. The dimensional field A(z, T )[W1/2] takes the form A =

√
P0ψ.

The dimensional time T [s] gives T = τT0 and the dimensional distance z[m] yields z = ξLNL.
The particular solution that describes MI growth and decay can be written as [41, 196]

ψ (ξ, τ) = eiξ
[
1 +

2 (1− 2a) cosh(βξ) + ib sinh(βξ)√
2a cos(ωτ)− cosh(βξ)

]
, (1.63)

where the solution’s properties are determined by the positive parameter a such as a ̸= 1/2

through arguments b = [8a (−2a)]1/2 and ω = 2(1− 2a)1/2. Over the range 0 < a < 1/2 the
solution (1.63) gives the Akhmediev breather (AB) prototype where one observes the evolution
from the trivial plane wave (a = 0) to a train of localized pulses with temporal period ∆τ =

π/(1− 2a)1/2 [41]. The AB solution provides MI analytic framework, with the real parameter
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ω corresponding to the modulation frequency, and the real parameter b giving the parametric
gain coefficient [197]. The MI instability growth rate is maximal at a = 1/4, but increasing a
actually leads to stronger localization in both dimensions until the limit a → 1/2 which gives
the Peregrine Soliton (PS) [39]

ψ (ξ, τ) =

[
1− 4 (1 + 2iξ)

(1 + 4τ 2 + 4ξ2)

]
eiξ, (1.64)

which corresponds to a single pulse with localization in both space (ξ) and time (τ). Then,
when a > 1/2, the parameters ω and b become imaginary, and the solution exhibits localization
in the temporal dimension τ with periodicity along the propagation direction ξ. Hence the
Kuznetsov-Ma (KM) soliton [199, 198] which is shown in Fig. 19(a) for a = 0.7.

Figure 19: Soliton on finite background (SFB) solutions of the NLSE. (a), Analytical SFB solutions of Eq. (1.63) for
varying parameter a. From left to right: an Akhmediev breather (AB); Peregrine soliton (PS); Kuznetsov-Ma (KM)
soliton [40]. An example of an AB collision and the second-order rational soliton (or second-order PS) are also shown.
(b)-(d), Experimental results. (b) shows temporal PS properties asymptotically approached for a = 0.42 [127], (c) shows
KM dynamics along the propagation direction for a = 1 [40] with experiments, simulations and theory compared in
each case. Here zp = 5.3km corresponds to one period of the KM cycle. (d) compares experiments and simulations of a
second-order solution consisting of the collision of two ABs (a = 0.14 and a′ = 0.34) [168].
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The analytical results above have been used to design experiments with controlled initial
conditions to excite particular SFB dynamics in optical fiber. The use of optical fibers provides
an especially convenient experimental platform as the dispersion and nonlinearity parameters
can be conveniently matched to available optical sources to yield a propagation regime where
the NLSE is a valid model for the dynamics. Experiments typically inject a multi-frequency
field into a nonlinear fiber, similar to the method developed for coherent pulse train generation
in telecommunications [200, 201].

1.7.2 Improvement on the description and controllability of rogue wave propaga-
tion in optical fiber

Nonlinearities within photonic crystal fibers (i.e., a form of light-matter interaction) cause in-
tense incoming light pulses to break up into trains of short pulses, called solitons. These solitons
exhibit particle-like behavior, and their shape tends to be preserved during propagation. When
the solitons are sufficiently short (typically less than 1ps), a cascade of high-order linear and
nonlinear phenomena results in the generation of a broad optical spectrum, known as SC. Dur-
ing this process, rare events can occur in unpredictable manners. For instance, an unusually
high wave can appear at the fiber output such as optical RW, analogue to oceanic RWs. Several
numerical and experimental studies have been conducted to characterize and control optical
rogue waves and rogue solitons. The main theoretical explanation derived from these investi-
gations is that these phenomena correspond to exact solutions of the universal mathematical
model, the NLS equation. The solutions of these models are of special interest in the fundamen-
tal theory, with several applications in many fields of science. After many studies, Scientists
found in practice that the standard NLS equation is poetical to some realistic problems like the
transmission of ultrashort pulses of the order of subpicosecond and femtosecond frequencies in
highly dispersive optical fibers. Therefore, the NLS equation has been extended to take into
account the thrid-order dispersion (TOD) and self-steepening (SS) nonlinearity. Thus, the in-
tegrable Hirota equation has been derived, even extended to take into account others nonlinear
effects . One of these effects is the nonparaxiality which arises in the miniaturization of devices
involving multiplexed beams. Moreover, chiral effects have attracted more attention in many
fields of science.

A. Chirality in optics: optical activity.
The term chirality [95] is a well-known concept of great interest in chemistry, biology, phar-

macology and optical fields [357]. In the context of chemistry, chirality refers to molecules that
lack mirror symmetry. One of the most universally known example is the human hands. In fact,
no matter how the two hands are oriented, it is impossible for the both hands to be coincide
through translations and rotations. In the context of optics, chirality refers to optical activity
which is the ability to rotate plane polarized light. The observe rotation of this plane polar-
ized light can be directed to the right-hand, that is a clockwise rotation, called dextrorotatory
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or to the left-hand, that is a counter clockwise rotation, called levorotatory. As consequence,
enantiomers or optical isomers are designated in the literature as right-and left-handed [203].
Therefore, chirality can be defined as fundamental property of molecules and materials that
leads to optical activity effects [204]. Some examples of chiral and achiral materials are depicted
in Fig. 20

(a) (b)

(c)

Figure 20: (a) Chiral and achiral objects. (b) Types of chiral molecules. (c) Type and origin of chirality.

Among chiral materials, chiral optical fibers are materials of crucial importance. They give
rise to optical activity effects such as optical rotation and circular dichroism which are optical
characterization techniques of molecules [357]. In fact, these effects are used to investigate the
structures of molecules and to elucidate the secondary structure of biomolecules. Optical activity
has attracted and inspired great effort in the developing of active photonic chiral metamaterials
[205]. These materials are designated to deliver an unusual electromagnetic response, in spite
of the fact that, optical activity is a linear effect.

To summarize, optical activity effects have been found in both linear and nonlinear optics. In
nonlinear optical fields, others characterization techniques like the second-harmonic generation -
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circular dichroism (SHG - CD) and the second-harmonic generation - optical rotatory dispersion
(SHG - ORD) were undertaken by T. Verbiest et al. [206]. Later, A. Bruyere et al. [207] have
studied the formation of chiral supramolecular aggregates at an air-water interface with the SHG
technique. Futhermore, Huttunen et al. [208] have shown that the third-harmonic generation -
circular dichroism (THG - CD) effects could occur in biological materials. Briefly, many works
have been done in chiral metamaterials [209], nanomaterials [210, 211] and in photonic crystals
[212].

1.7.3 Optical fiber devices, characteristic and applications

Optical fibers are cylindrical dielectric waveguides in which light can propagate at optical fre-
quencies along its main axis [184]. Since the beginning of 20th century, one denotes an improve-
ment and several scientific progress in the understanding, design, fabrication and applications
of optical fibers. One can mention in telecommunication domain, a higher production level of
optical fibers which are used throughout the world to transmit information (i.e., for commu-
nication). More specifically, optical fibers have several applications in life-science and industry
fields. So far, one can mention, on the one hand, the sensing, medical imaging, power trans-
mission, illumination and decoration in the industry area. On the other hand, one can mention
the spectroscopy, optical imaging, fabrication of lasers and optical amplifiers. Concerning the
improvement on fiber design, one denotes the step-index fibers, made with cylindrical core of
high refractive index n1 where the light propagates, surrounded by a cladding of low refractive
index n2 that traps the light through total internal reflection. Most of them are made of fused
silica SiO2 and the refractive index difference can be slightly modified by chemical doping. The
Snell’s law of refraction (i.e., a total reflection of light at an interface between two materials
of refractive index n1 and n2 (with n1 > n2), for incident angles α > αmin = sin−1 (n2/n1) )
defines the angles of which the light is transmitted through the fiber after multiple reflections
(see Fig. 21).

There is a cone of light at the input of the fiber for which the incident angles on the interface
core/cladding are higher than αmax, and for which the light is transmitted. Outside of this cone,
the light escapes through refraction in the cladding. This cone of light defines the numerical
aperture (NA) of the optical fiber. By applying the Snell’s law to the end of the fiber, the NA
yields [184]

NA = n sin
(π
2
− αmin

)
=
√

(n2
1 − n2

2), (1.65)

where n is the refractive index of the outside medium. Through Fig. 21, one can assume that
any ray entering the fiber within the cone defined by NA can be transmitted.

It is well-known that, when interference effects are taken into account, it becomes clear that
only a discrete set of rays are allowed to propagate in the fiber. Therefore, one can observe
different modes of propagation summarize in Fig. 22
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Figure 21: Light transmission in a step-index fiber based on multiple total internal reflections at the interface between
the core (refractive index n1) and the cladding (refractive index n2). The acceptance cone is defined by the minimum
incidence angle αmin allowing the total internal reflections. The rays entering the fiber from outside this cone will
experience power loss due to refraction, and all their energy will be dissipated in the cladding after few reflections [175]1.

In Fig. 22 (a), each ray corresponds to one mode but, the downside is that multimode step-
index fiber undergo the intermodal dispersion. Therefore, there will be a delay between the exit
time of two modes, as the rays follow different optical paths. Figure 22 (b), exhibits the graded-
index fiber where the rays are continuously deflected instead of propagating along straight lines
between two reflections. Moreover, the refractive index continuously decreases from the central
axis to the cladding and the intermodal dispersion induced by the fiber is decreased because
the difference between the optical paths of small and large incident angles is minimized. The
NA of graded-index fiber, is maximum at the center and decreases as a function of the radial
distance, when the rays enter closer to the cladding. As consequence, graded-index fibers are
less mode fibers and less transmitted light compared to a step-index fibers (see 22 (a) and (c)).

Photonic crystal fibers (PCFs).
As scientific progress, the micro-structured fibers, called photonic crystal fibers (PCFs) have

been developed in 1990s by the group of Philip St. J. Russell [213]. The core of PCF is made of a
periodic arrangement of microscopic air holes running along the whole length of the fiber made
with silica. Their idea was to trap the light in a hollow core by preventing its propagation in the
cladding by the means of a 2-D photonic crystal. Photonic crystals are periodically organized
nanostructures that creates "stop-bands", or photonic band gaps (PBG), preventing the prop-
agation of light in one, two or three dimensions. It is well to mention that, the trapping of the
light and its propagation in the core does not always come from the PBG effect but, depends on
the design of the fiber, particularly, on the structure of the core. To summarize, fiber properties
depends on the composition of the fiber. Thus, wide diversity of PCFs has been fabricated by
doping the silica and are used in fiber-optical parametric oscillators and amplifiers [214, 215],
artificial black holes [216] or intense SC generation [217, 218] for fluorescence microscopy [219],
optical metrology [220] and optical coherence tomography [221]. An example, of solid-core PCF
is designed in Fig. 23.
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Figure 22: Typical dimensions, refractive index profiles, and rays paths in (a) multimode step-index fiber, (b) multimode
graded-index fiber and (c) monomode step-index fiber [213].

Figure 23 depicts the simplest kind of PCFs which has a hexagonal pattern of air holes, with
one hole missing in the center (core) made of silica, where the light propagates. The parameters
d and Λ are the diameter of the hole and the hole-to-hole distance (pitch). The mechanism of
guidance is conceptually similar to the total internal reflections (TIR) in classical fibers, but
an advantage of PCFs is the possibility to tailor some of their properties by changing d and/or
Λ. For instance, the dispersion of a fiber can be modified by changing the design. This is a big
advantage compared to classical fibers where the value of dispersion cannot be changed too far
away from the dispersion of the bulk material [184]. Another remarkable feature of PCFs is
their ability to exhibit single-mode behavior for a wide range of wavelengths [222]. Moreover,
one advantage of PCFs over classical fibers, is their small core where the strong confinement
of the light can lead to increased intensity, which is useful for studying and using nonlinear
effects. However, as the modal filtering depends only on the d/Λ ratio, it is possible to design
fibers with large cores, by scaling the whole structure. This is the principle of large-mode area
fibers, that are useful if one wants to avoid the nonlinear effects caused by the presence of high
powers in silica.

Photonic band-gap (PBG) fibers.
Among micro-structured fibers, one denotes the Photonic band-gap (PBG) fibers whose

core refractive index is higher than the cladding refractive index. In practice, the total internal
reflection (TIR) guiding dominates, in spite of occurrence of the PBG. In the opposite case
where the core refractive index is lower that the cladding refractive index, the TIR cannot
operate. Then, the guidance relies only on the PBG effect [223].

44



Figure 23: Scheme of a solid-core PCF. The light gray area is silica and the darker inclusions are air holes. d is the
diameter of a hole, and Λ is the pitch [184].

Hollow-core photonic bandgap (HC-PBG).
Another technological improvements, is the fabrication of Hollow-core photonic bandgap

(HC-PBG) fibers where the light propagates in an air core [224, 225, 226]. Their key parameter
is the ratio d/Λ, which corresponds here, to the air filling fraction of the photonic cladding.
The width of PBG increases for increasing ratio d/Λ. The broad transmission bands is obtained
when the ratio (d/Λ) > 0.9. The broadest bands could be achieved for (d/Λ) = 1, but the
fabrication of a such fiber is not feasible. As the light propagates in air rather than in silica,
HC-PBG fibers have been used for the transmission of high-energy pulses. The transmission
losses of such fibers are theoretically lower than those of conventional all-silica fibers, because
the intrinsic transmission of air is much higher than the one of silica. But in practice, HC-PBG
are still suffer from losses due to surface roughness (1.2 dB/km at 1600 nm) whereas Silica
fibers have gone through several technological improvements and have come close to the limit
of Rayleigh scattering, with transmission losses as low as 0.15 dB/km. Roberts et al. have shown
that the design of HC-PBG could be optimized to reach transmission losses of 0.1 dB/km [227].

Kagomé fibers.
An interesting type of hollow-core fiber, namely, Kagomé fiber, was made without photonic

band gaps. Its photonic cladding is based on a kagomé lattice of silica [228, 229], whose pattern
looks like a Star of David and where the light propagates in an air core surrounded by an air /
silica microstructure (photonic cladding). Its guiding properties are not fully understood, but
they have a very wide bandwidth of transmission, which can be used in several applications.
One of the main drawback of Kagomé fibers, is their higher losses which are important compare
to other HC-PBG fibers.

Solid-core photonic bandgap (SC-PBG) fibers.
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In SC-PBG fibers, the core is made of low-index silica, while the photonic cladding is made
of an array of high-index silica. As illustration, Luan and co-workers demonstrated the first
SC-PBG fiber with a core made of LLF1 glass and a photonic cladding made of inclusions of
SF6 glass [230]. So far, the possibility to dope silica with diverse rare-earth ions allows to design
a wide range of fibers with different properties. The use of SC-PBG fibers is promising in fiber
lasers [231, 232] and fiber amplifiers [233] as well as in the investigation and control of nonlinear
effects such as SC generation and soliton propagation [234].

A great scientific progress, such as the design and fabrication of the first SC-PBG-1 (SC-
PBG-1) and second SC-PBG (SC-PBG-2) were made at IRCICA laboratory in Lille (France).
These two types of SC-PBG have been used in optics and an illustration is revealed in Fig. 24
and Fig. 25.

Figure 24: (a) Scanning electron microscopy (SEM) image of the core and photonic cladding of the SC-PBG-1 fiber.
The dark gray area is the silica, the light gray dots are the Ge-doped rods and the black dots are the air holes. Courtesy
of A. Kudlinski. (b) Image of the fundamental mode on a CMOS camera. (c) Spatial profile along the dotted white line
in (b). Dotted red line: Gaussian fit [184].

Figure 24(a) shows the scanning electron microscopy (SEM) image of the cross-section of
the fiber. The structure is based on silica, with a doubly periodic network of air holes and
germanium doped silica rods. The Ge-doped silica rods (light gray regions) have a diameter
of 2.19µm and are separated by a pitch of 3.09µm. Their refractive index profile is parabolic
with a maximum refractive index difference of 32× 10−3 relative to the pure silica background
(dark gray region). Air holes (black regions) of 2.33µm diameter were added periodically to
the cladding. Figure 24(b) exhibits the image obtained on the CMOS camera after coupling to
the fundamental mode. Its spatial profile is observed along the dotted white line. Figure 24(c)
depicts the fit of the spatial profile by a Gaussian function of width 3.2µm.

In Fig. 25(a), the Ge-doped silica rods (with a diameter of 1.51µm), are separated by a pitch
of 2.40µm and, the air holes with a diameter of 1.47µm. Figure . 25(b) compares the |β2| /γ
ratio of this fiber (red line), obtained by finite element calculations, with the typical values for
standard PCFs (gray area).
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Figure 25: (a) SEM image of the cross-section of the core and photonic cladding of the SC-PBG. The dark gray area is
the silica, the light gray dots are the Ge-doped rods and the black dots are the air holes. Courtesy of A. Kudlinski. (b)
Calculated |β2| /γ ratio for standard PCFs and SC-PBG-2. [184].

1.8 Brief description of experimental realizations of rogue wave in
extended fields of science

More often, the experimental systems offer the possibilities of handling the parameters that are
responsible for the generation of extreme waves. Rogue waves in laboratory experiments are
easier to investigate than rogue waves in ocean. At the same time, the collection of many events
becomes possible in relatively short time intervals, depending on the typical response time of
the system considered. As consequence, considerable efforts have been done to study the rogue
wave phenomena in a number of different physical systems, generated from different originating
mechanisms. A brief description of some experimental realizations on the transient rogue waves
appearing during the inverse cascade of the wave turbulence regime in superfluid Helium [235]
is developed. The linear rogue waves resulting from the inhomogeneous emission of a large
number of microwave antennas [236], rogue waves occurring on the surface of a parametrically
driven fluid [27] and rogue waves in plasma systems [29] are described in subsections below.

1.8.1 Rogue waves in superfluid Helium

When cooled below the critical temperature of Tλ = 2.17K, 2He condenses to form a liquid
that has remarkably different properties than a normal fluid. It is, usually, called He II to
distinguish it from the He I above Tλ. He II behaves as if it were a mixture of two different
fluids. A normal fluid component with viscosity and carrying all of the thermal energy of the
liquid, and an inviscid superfluid component with zero entropy. The two fluids separately fill
the containing vessel.

Oscillatory counterflow of the two components can occur at constant density and pressure,
corresponding to a temperature-entropy wave known as second sound. Second sound has a rel-
atively low phase velocity, approximately 20m/s and an extremely small attenuation coefficient
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for frequencies below 1MHz. Its velocity u2 depends strongly on its amplitude u20 and can be
approximated as

u2 = u20 (1 + αδT ) , (1.66)

where u20 is the velocity at vanishingly small amplitude. The nonlinearity coefficient α can be
made large, and either positive or negative, by adjustment of the temperature. The strength
of the wave interactions is determined by α hence, can be easily controlled. These properties
make He II an ideal medium for systematic studies of nonlinear interactions between waves
[235, 237].

Rogue waves have been observed in an experiment involving second sound waves within a
resonant cavity filled with superfluid Helium. Because of the small attenuation coefficient for
the second sound, the quality factor of the cavity is very high, enabling large wave amplitudes
to be achieved. Being a temperature wave, second sound can conveniently be excited with
a heater and detected thermometrically. Energy is injected in the system by a thin heater
sinusoidally driven by a harmonic voltage generator in the frequency range 0.1−100kHz, while
the frequency of the second sound (twice the frequency of the voltage generator) is set close to
a longitudinal resonance of the cavity.

Under certain experimental conditions a direct energy cascade exists, that is, the energy
injected at the driving frequency flows steadily towards higher frequencies with negligible dissi-
pation until the viscous cut-off is reached, beyond which it is rapidly dissipated as heat. When
the driving amplitude is increased or the detuning of the drive from the resonant frequency
is decreased, an inverse cascade appears, which is associated with an instability against the
formation of subharmonics. Rogue waves are observed during the transient evolution of the
inverse cascade, that is, they accompany the subharmonic formation that characterizes the
inverse cascade. A typical experimental evolution is shown in Fig. 26

Rogue waves in superfluid Helium have, so far, only been observed during the transient
evolution of the second sound waves, in the wave turbulence regime and while the inverse energy
cascade is evolving. Their relation with rogue waves on the ocean surface include similarities:
in both cases, the phenomena under consideration are non-equilibrium in nature, the rogue
waves are rare and extreme events that arise from an instability of large amplitude waves. The
differences include: the second sound waves are produced directly by a periodic driving force,
whereas on the ocean roughly periodic waves are created by e.g. wind of a sufficient velocity,
the second sound waves are one-dimensional standing waves, within the volume of the fluid,
whereas the ocean waves are on the surface and can propagate in two dimensions, rogue waves
on the ocean can apparently appear under steady state conditions, whereas those in second
sound have only been observed during the transient evolution of the inverse energy cascade
[237].
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Figure 26: (a) Experimental setup for the observation of second sound waves in superfluid Helium. (b) Evolution of the
second sound wave amplitude after switching on the drive at a frequency near resonance; the signals (c)-(e) are enlarged
plots corresponding to the 1-3 windows indicated by the arrows. Rogue waves appear in the 2 window and typically
accompany the subharmonic formation that characterizes the inverse cascade [237].

1.8.2 Rogue waves in the linear regime of microwave antennas

Rogue waves have recently been observed in a study of microwave transport [236]. The exper-
imental setup, shown in Fig. 27, is made of randomly placed metallic cones, each mimicking
an r−2 potential on the scale of its radius. The metallic bottom plate supports the random
arrangements of scatterers. The source antenna is mounted close to one of the short sides, and
varying its position enables the incoming waves to arrive from different directions. The drain
antenna is mounted in the top plate (not shown) and acts as a probe. The top plate can be
moved in both horizontal directions, allowing for a spatial mapping of the wave fields within
the scattering arrangement.

For wavelengths smaller than or comparable to the scatterer size (frequency f = 30 −
40 GHz), the system shows branching structures reminiscent of electron current distributions
observed in two-dimensional electron systems [236]. At wavelengths larger than the cone size
(frequency f = 7.5 − 15 GHz), the bulk of the intensity distribution approaches a multiple-
scattering correction to Rayleigh statistics, as expected in multiple-scattering media. However,
the probability of finding very high intensities is greatly enhanced with respect to the predictions
provided by the Rayleigh statistics.

The extreme events in the microwave system occur in space (two-dimensions) and time,
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Figure 27: Experimental setup for the observation of rogue waves in a microwave system: the platform has width 260mm

and length 360mm; the probe antenna is fixed in a horizontally movable top plate located 20mm above the bottom (not
shown). (b) A rogue wave event: the time evolution of wave intensity at the center of one of the hot spots is shown for
the most extreme event observed; the inset shows the region surrounding the hot spot at the moment of the freak event.
[236].

therefore, offering several qualitative analogies with the rogue waves on the ocean surfaces.
However, the microwave system is linear, so that the origin of the extreme events cannot be
searched in a modulational instability effect, as it occurs for nonlinear waves, and the description
in terms of envelope solitons fails in this case. What is suggested by the authors is that the large
deviations from the Rayleigh distribution is a consequence of inhomogeneities in the system and
of averaging over different configurations of disorder. The randomly placed cones behaves like
lens, which occasionally focus the microwaves into a hot spot. The mechanism is very similar
to the focusing obtained by random currents [238]. Indeed, it is verified by fixing the probe
position that the local distribution of intensities is a Rayleigh law Ploc(I) = s−1e−

I
s , with the

time-averaged value s = ⟨I⟩ depending on the chosen position. Then, the overall distribution of
time-dependent intensities, collected over different positions and/or realizations of the disorder,
is given by the integral of the local distributions, which yields a chi-square distribution that
fits the experimental data.

This example shows how inhomogeneity can play a key role in inducing large deviations
from the Gaussian wave statistics. As reported in the following section, such a key role of in-
homogeneity has emerged also in optics, both in nonlinear [110] and linear experiments [239].
In particular, in the linear systems the inhomogeneity appears as an essential ingredient. In-
deed, in this case the construction of the rogue wave events can be understood in terms of
linear superposition of wave packets traveling with different group velocities and interfering
constructively at a given space position and at a certain instant time. For this rare and positive
coincidences to occur more frequently, the spectrum of the possible group velocities must be
large, a condition that is enhanced if the system is largely inhomogeneous.
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1.8.3 Rogue waves in capillary waves and plasmas

A. Extreme events in parametrically driven capillary waves

Parametrically excited waves occurs at the surface of vibrated fluids as a consequence of the
interplay between gravity and the capillary forces that tend to maintain the surface of the liquid
at its rest position. Above a critical amplitude of the forcing, an instability takes place for which
small surface deformations are amplified and waves oscillating at half the forcing frequency set
on the surface of the vibrated liquid [240]. Capillary waves belong to the high frequency branch
of the surface waves, for which the restoring force is the surface tension. Their wavelengths are
typically shorter than about 10mm. Because of their small scale, capillary waves can be studied
under well-controlled conditions in the laboratory using a variety of experimental methods.

Extreme events have been recently obtained in a system of capillary waves excited paramet-
rically in a vertically shaken container filled with water [27]. The waves were forced by shaking
the container at the frequency of 60 Hz with an acceleration in the range of a = 0.3− 5g. The
strength of forcing is characterized by the value of supercriticality above the threshold ath of
the parametric excitation, ε = a − ath. The water surface was visualized by adding a small
amount of a fluorescent dye to the water and by illuminating it with a thin green laser sheet.
The motion of the fluorescent surface in the vertical cross section was then captured by a fast
video camera.

Figure 28: (a) Time trace of the surface elevation showing an extreme wave event in parametrically driven capillary
waves. Instantaneous snapshots showing waveforms: (b) 4 periods before the large event, and (c) during the large wave
event. (d) Probability density function of the wave crests versus the normalized crest height [27].

Fig. 28 (a) shows a time trace of the surface elevation η(t) measured at the strongest forcing,
ε = 5. This trace contains an extreme wave event, that is, a wave with a crest height > 6mm.
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The peak amplitude exceeds the standard deviation of the wave background by a factor of more
than five. Two instantaneous snapshots show the waveforms before the peak,(see Fig. 28 (b)),
and during the large event, (see Fig. 28 (c)). Note that the rogue wave is characterized by an
almost vertical wave front. Figure 28 (d) shows the probability density function (PDF) of the
normalized wave crest heights x = η/σ , where σ is the standard deviation, recorded for 300s, or
104 wave periods. Strongest waves, x > 5, have a probability which is substantially higher than
expected from the e−2x Gaussian trend. The system displays, therefore, a statistical behavior
typical of extreme events [241]. As for the frequency spectra of the parametrically excited
waves, the development of frequency sidebands is first observed when the forcing is gradually
increased, thus, suggesting that the classical phenomenology of modulation instability is, here,
at the origin of the rogue wave phenomenon. Indeed, at further increase of the forcing, the
spectrum becomes continuously broadened and displays a triangular shape with exponential
tails. Correspondingly, the PDF of the wave amplitude develops tails with crest heights in
excess of 6.

The evolution of the wave amplitude in the time domain shows envelope solitons as a result
of the MI, and the nonlinear broadening of the spectra seems to originate from the generation
of shorter envelope solitons, in analogy to the spectral broadening of the light pulses observed
in PCFs at the first stages of SC generation [218]. Then, the rogue wave generation in the
parametrically excited waves probably results from a process similar to the collision of breathers
as observed, for instance, in optical fibers [12]. In any case, modulation instability appears as
a characteristic feature for the spectral broadening.

B. Rogue waves in plasmas

Numerical investigations have been, recently, reported for the generation of acoustic rogue
waves in a dusty plasma composed of negatively charged dust grains and nonextensive electrons
and ions [242]. A reductive perturbation technique has been used to obtain a NLS equation,
hence, the prediction of a nonlinear evolution of modulationally unstable dust-acoustic wave
packets. The authors show numerically that within the MI region a random perturbation of the
amplitude grows to create the dust-acoustic rogue waves.

Experiments in a multicomponent plasma with negative ions have, recently, reported the
evidence of Peregrine solitons of ion-acoustic waves [29]. It is shown that, for a critical concen-
tration of negative ions, slowly amplitude modulated perturbations undergo self- modulation,
giving rise to high amplitude localized pulses. The measured amplitude of the Peregrine soli-
ton is 3 times the nearby carrier wave amplitude, which agrees with the theory and with the
numerical solution of the NLS equation. Direct analogies for this type of soliton solutions can
be established with the Peregrine solitons observed in wave tank experiments [57] and in op-
tical fibers [127]. Finally, rogue waves, in the form of giant breathers, are numerically shown
to develop in the Alfvén wave turbulence regime described by the randomly driven derivative

52



NLS equation in the presence of a weak dissipation [243]. The distribution of the instantaneous
global maxima of the Alfvén wave intensity fluctuations is shown to be accurately fitted by
power laws, which contrasts with the integrable regime (absence of dissipation and forcing)
where the behavior is rather exponential. As the dissipation is reduced, rogue waves form less
frequently but reach larger amplitudes. Here, the rogue wave generating mechanism appears as
related to a genuine wave turbulence regime. Analogies could be drawn with the rogue waves
experimentally observed in the superfluid Helium during the wave turbulence inverse cascade
[235].

1.9 Conclusion

This chapter present the rogue wave historical context in oceanography then, from hy-
drodynamics to optics. The main features of rogue wave phenomena are elucidated as well as
the process for their generation in optical fibers. Moreover, an analogy of results is shown on
both theoretical, numerical and experimental realizations. In addition, the linear and nonlinear
effects that can influence the rogue wave propagation in optical fibers are presented. An im-
provement on the description and controllability of rogue wave propagating in optical fiber are
revealed. The rogue wave extension in others fields of science and their applications are given.
Finally, the optical fibers are presented as high quality devices in communication and great
media for wave propagation.
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Chapter 2

Analytical and Numerical Methods

2.1 Introduction

Nonlinear propagation equations are widely used to describe complex phenomena in many fields
of science, such as plasma physics, hydrodynamics, solid state physics and optical fibers. One
of this nonlinear equation with undeniable role, is the NLS equation which was first derived
in 1967 by Benney and Newell [244] in a general setting. Then, in 1968, the NLS was also
derived in the study of modulational stability of deep water waves by Zakharov [245]. Later, in
1973, Hasegawa and Tappert [77] have shown that the same NLS equation governs light pulse
propagation in optical fibers. The standard NLS equation is known as the universal model
to describe nonlinear wave propagation as well as rogue wave phenomenon in optical fibers
[15, 59]. After many studies, scientists found in practice that, the NLS equation is poetical to
some realistic problems like the transmission of ultrashort pulses of the order of subpicosecond
and femtosecond frequencies in highly dispersive optical fibers. Therefore, the NLS equation has
been extended to higher-order NLS equations [66, 67, 68] on which the third-order dispersion
(TOD) [69, 70, 71, 72] and other nonlinear effects such as self-phase modulation (SPM) [72, 73],
cross-phase modulation (XPM) [24, 72], self-steepening (SS) [68], self-frequency shift (SFS) [67,
71], and four-wave mixing (FWM) [24, 71, 72] have been taken into account. Moreover, vector
NLS equations has increased markedly over the past decade with the introduction of new optical
fiber technology that permits the transmission of pulses through many channels in a single fiber
(wavelength division multiplexing) and the production of ultrafast pulses (in terahertz range)
through birefringent fibers where more than one polarization is present [246, 247]. Due to
the complexity and difficulty of solving extended NLS models with higher-order effects, many
analytical and numerical methods have been applied to find the exact solutions (rogue wave
prototypes) and other particular solutions.

In this chapter, the description of analytical methods such as the similarity transformation,
Lax pair method, mDT and DDT methods are of special interest. The investigation is based
on Lax pair and DT formulations and construction hierarchy. Then, will follow the description
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of the pseudospectral and difference-differential equation methods, related to the FFTs and
fourth-order Runge-Kutta method. These methods are useful to study the dynamical behavior,
properties and any possibilities of control of nonlinear effects on rogue wave propagation in
optical Kerr and chiral fibers.

2.2 Analytical methods

The finding of rogue wave solutions of nonlinear propagation equations is of great interest.
However, determining solutions of nonlinear propagation equations is a very difficult task and
only in certain cases one can obtain exact solutions. Among the analytical methods, one can
mentioned the DT method [248, 249], the modified DT method [63, 93], DDT method [96, 97],
inverse scattering transformation [250, 251], Hirota method [252], Bilinear method [253] from
which, one can obtain the exact solutions. One can also mention the Hirota bilinear method [254,
255], perturbation method [256, 257], Bäcklund transformation method [258], Lie symmetry
[259, 260], (G′

G
)-expansion method [261, 262], F -expansion method [263, 264, 265], Jacobian-

elliptic function method [266, 267], Painlevé analysis [268], Exp-function method [269, 270, 271],
and the tanh function method [272, 273]. As rogue waves are related to rational solutions,
particular methods such as Lax pair method, mDT and DDT method are adequate to obtain
usual and unusual rogue waves.

2.3 Symmetry reduction method

In more than one space dimension, the NLS equation is not any more integrable [274]. In that
case, no Lax pair and linear solution techniques are available to solve it. Moreover, the non
integrability of NLS model also occurs when it has varying coefficients. Therefore, it becomes
non integrable and this can strongly affect the wave propagation in Kerr and chiral media.
To solve the problem of non integrability of NLS model, one can either use the symmetry
reduction method using the third-order propagation vector field [275] or the envelope field in
gauge form [276] to obtain some integrability conditions. The techniques do not depend on the
equation under study being integrable. They consist of a systematic application of group theory
to reduce the non integrable partial differential equation (PDE) to an ordinary differential
equation (ODE) which is then solved whenever possible. This method is called "symmetry
reduction" or "similarity transformation" and is simple, straightforward, and mathematically
rigorous [274]. It goes back to Lie [278] and is described in many books [279, 280, 281, 282]. The
method consists of several steps. The first is to determine the symmetry group of the considered
equation. Let consider the cubic NLS equation below [274]

iψt +∆ψ = a0ψ + a1ψ|ψ|2 + a2ψ|ψ|4, (2.1)

where ψ = ψ (x, y, z, t) belong to the complex set, ai to the real set, with {a1, a2} ≠ {0, 0} and
for which the initial conditions correspond to a cylindrical geometry. More specifically, to the
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impose Cauchy conditions at some time t = t0 on a cylinder ρ = ρ0, such as

ψ (x, y, z, t) |(t,ρ)=(t0,ρ0) = f1 (θ, z) ,

[∇ψ (x, y, z, t)]2|(t,ρ)=(t0,ρ0) = f2 (θ, z) ,

x = ρ cos θ, y = ρ sin θ.

(2.2)

The quintic NLS equation (2.1) is not integrable even in 1 + 1 dimensions, still less in higher
dimensions. For a1 ̸= 0 and a2 ̸= 0, Eq. (2.1) belong to the extended Galilei group class
[283]. If either a1 or a2 vanish, the symmetry group is larger, namely, the Galilei-similitude
group, including dilations [283]. The second step is to classify the subgroups of the symmetry
group into conjugacy classes. Both Galilei and Galilei-similitude groups have been done in the
literature [283]. In this case, the interest is focus in a very specific subgroups that have orbits of
codimension one, compatible with a cylindrical geometry, in the space of independent variables.
The requirement that a solution should be invariant under such a subgroup reduces Eq. (2.1) to
an ODE. The final step is to solve the obtained ODE. This can be done with several methods.
If on the one hand, the ODE is of the Painleve type (i.e., its solutions have no moving critical
points) one can reduce Eq. (2.1) to a standard form that can be solved by the mDT or DDT
method as well as in terms of elementary functions, elliptic functions, or Painleve transcendent.
If on the other hand, the ODE itself, still has a symmetry group, its order can be decreased
by making use of that symmetry. The resolution of ODEs obtained by symmetry reduction is
in general a formidable task, since the equations are nonlinear and complex. Two systematic
approaches are available.

The first approach consists to find the symmetry group of the obtained ODE. If one exists,
it is used to decrease the order of the equation. The second approach which was found to be
more fruitful [274] is to determine whether the ODE belong to a class of integrable nonlinear
ODEs, known as Painleve-type equations class. An ODE is said to have the Painleve property
if none of its solutions has movable critical points ( i.e., singularities) other than poles with the
positions which depend on the initial conditions. Equations with the Painleve property are in
general much easier to solve than other.

It should be noted that the method of symmetry reduction for a PDE involves the construc-
tion of solutions that are invariant under a subgroup of the symmetry group of the equation.
When constructing the symmetry group, no mention should made of any boundary conditions.
If these are added to the equation, they will cause a symmetry breaking, i.e., they will reduce
the symmetry group to some subgroup (in the extreme case to the identity group, i.e., the
symmetry can be completely destroyed). The symmetry reduction method has been applied in
non integrable NLS models to look for exact analytical solutions and is one of adequate method
to construct the rogue wave solutions when combined to the mDT [94] or DDT [98, 99] method.
From this preliminary method, varying coefficients are obtained by integration of elementary
functions whereas the complex field is deduced from the DT associated to the Lax pair method
[277].
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2.4 Lax pair method

The term Lax pairs refers to a set of two operators that, if they exist, indicate that a corre-
sponding particular evolution equation [284]

F (x, t, u, ...) = 0, (2.3)

is integrable. They represent a pair of differential operators having a characteristic whereby they
yield a nonlinear evolution equation when they commute. The idea was originally published
by Peter Lax in a seminal paper in 1968 [285]. A Lax pair consists of the Lax operator L
which is self-adjoint (i.e. an operator that is equal to its own adjoint or, if a matrix, one that
is Hermitian, i.e a matrix that is equal to its own conjugate transpose.) and may depend upon
x, ux, uxx,...,etc; but not explicitly upon t and the operator M that together represent a given
partial differential equation such that

Lt = [M,L] = (ML− LM) , (2.4)

where
[M,L] = (ML− LM) = − (LM −ML) = − [L,M ] , (2.5)

represents the commutator of the operators L and M . Operator M is required to have enough
freedom in any unknown parameters or functions to enable the operator Lt = [M,L] or (Lt +

[L,M ] = 0) to be chosen so that it is of degree zero, (i.e. does not contain differential operator
terms and is thus a multiplicative operator). L and M can be either scalar or matrix operators.
An important characteristic of operators is that they only operate on terms to their right. The
process of finding of operators L and M corresponds to a given equation and is generally non-
trivial. Therefore, if a clue(s) is available, inverting the process by first postulating a given L and
M and then determining which partial differential equation they correspond to, can sometimes
lead to good results. However, this may require the determination of many trial pairs and,
ultimately, may not lead to the required solution. Because the existence of a Lax pair indicates
that the corresponding evolution equation is integrable (i.e. the equation is exactly solvable, i.e.
solutions obtained by linearization or direct methods). Finding Lax pairs is a way of discovering
new integrable evolution equations [251, 286, 287].

In addition, if a suitable Lax pair can be found for a particular nonlinear evolutionary
equation, then it is possible that they can be used to solve the associated Cauchy problem
using a method such as the inverse scattering transform (IST) method derived by Gardener et
al. [288]. Finding of rational solutions related to rogue waves with the mDT [63, 93, 94] and
DDT [55, 96, 97] methods are of special interest in this thesis.

2.4.1 Lax pair analysis: Matrix form

In 1974 Ablowitz, Kaup, Newell, and Segur [289] published a matrix formalism for Lax pairs
where they introduced a construction that avoids the need to consider higher-order Lax opera-
tors. This method is also referred to as the Ablowitz-Kaup- Newell-Segur (AKNS) method. In
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their analysis, they introduced the following system

DxΨ = XΨ,

DtΨ = TΨ,

(2.6)

where X and T correspond to operators L and M , respectively, and is an auxiliary vector
function. Matices X and T will, in general, both depend upon the time independent eigenvalue
λ, and the size of Ψ will depend upon the order of L. Thus, if L is of order 2, then vector Ψ

will has two elements and X and T will each be a 2 × 2 matrix. The compatibility condition
for Eqs. (2.6) is

[Dt, Dx] Ψ = Dt(XΨ)−Dx(TΨ) = (DtX)Ψ−XDtΨ− (DxT )Ψ− TDxΨ = 0, (2.7)

which can be written succinctly as

(DtX −DxT + [X,T ]) Ψ = 0, (2.8)

where the matrix commutator is defined as

[X,T ] := XT − TX. (2.9)

Equation (2.8) is known as the matrix Lax equation. As a consequence of geometrical con-
siderations, Eq. (2.8) is also known as the zero-curvature equation [286].

2.4.2 Lax pair of matrix ordinary differential equations (ODEs)

The Lax pair of matrix ordinary differential equations (ODEs) yields

ψx = Xψ, ψt = Tψ, (2.10)

where ψ, X and T are N ×N square matrices. ψ = ψ (x, t, k) is a common solution of the two
linear ODEs (2.10), while X = X (x, t, k) and T = T (x, t, k) depend on the coordinate x, the
time t and the complex spectral parameter k according to the definitions

X (x, t, k) = ikσ +Q (x, t) ,

T (x, t, k) = 2ikC − σW + σ [C,Q (x, t)] ,

(2.11)

where [A,B] stands for the commutator AB − BA. To simplify the analysis, let consider the
Xand T matrices as first degree in the spectral variable k. This choice is responsible of similar
role, played by the two independent variables x and t. Therefore, their interpretation as space
and time can change according to the physical application. In addition, this choice leads to
wave equations which are dispersionless when linearized around the vanishing solution. The
dispersion terms can be easily introduced with only technical changes of the method [95],
where the dispersive term of NLS type has been considered. In Eq. (2.10), σ and C are the
diagonal constant matrix and an arbitrary constant block-diagonal matrix, respectively

σ =

(
1N(+)×N(+) 0N(+)×N(−)

0N(−)×N(+) −1N(−)×N(−)

)
, (2.12)
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C =

(
C(+) 0N(+)×N(−)

0N(−)×N(+) C(−)

)
, (2.13)

where C(+) and C(−) are respectivelyN (+)×N (+) andN (−)×N (−) constant square matrices, with
N = N (+) +N (−), N (+) and N (−) being arbitrary positive integers. The potentials Q = Q (x, t)

and W = W (x, t) are the off-diagonal and block-diagonal matrices, respectively

Q =

(
0N(+)×N(+) S(+)U †S(−)

U 0N(−)×N(−)

)
, W =

(
W (+) 0N(+)×N(−)

0N(−)×N(+) W (−)

)
, (2.14)

where the block U = U (x, t) is a rectangular N (−)×N (+), while the two blocks W (±) are square
N (±)×N (±) matrices. The superscripted dagger stand for the Hermitian conjugation. Moreover,
S(+) and S(−) are N (+) ×N (+) and N (−) ×N (−) diagonal matrices, respectively. Their diagonal
elements s(±)

n , with no loss of generality, are just signs as follows

s(±) = diag
{
s
(±)
1 , ..., s

(±)

N(±)

}
, s(±)2

n = 1. (2.15)

The compatibility of the two ODEs (2.10) entails the matrix first-order differential equations

Ut = UxC
(+) − C(−)Ux + UW (+) +W (−)U,

W
(+)
x =

[
C(+), S(+)U †S(−)U

]
,

W
(−)
x =

[
C(−), US(+)U †S(−)

]
,

(2.16)

provided the square N (±) ×N (±) matrices C(±) and W (±) satisfy the conditions

C(±)† = S(±)C(±)S(±),

W (±)† = −S(±)W (±)S(±).

(2.17)

The reduced form (2.14) of the matrix Q = Q (x, t) is well motivated by the fact that it
captures several interesting models of multicomponent wave interactions in weakly nonlinear
media [290, 291].

2.4.3 Lax pair of coupled partial differential equations (PDEs)

All systems of coupled PDEs considered can be reduced in the following matrix PDE [95]

Qt =
[
C(0), Q

]
+ σ

[
C(1), Qx

]
− σ {Q,W} − iγσ (Qxx − 2Q3) ,

Wx =
[
C(1), Q2

]
,

(2.18)

where the dependent variablesQ = Q (x, t) andW = W (x, t) are
(
N (+) +N (−)

)
×
(
N (+) +N (−)

)
block matrices in the form

Q =

(
0N(+)×N(+) Q(+)

Q(−) 0N(−)×N(−)

)
, W =

(
W (+) 0N(+)×N(−)

0N(−)×N(+) W (−)

)
, (2.19)
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Here, the diagonal entries W (+), W (−) are square matrices of dimension N (+) ×N (−) and
N (−) ×N (+), while the two off-diagonal rectangular blocks Q(+) and Q(−) are N (+) ×N (−) and
N (−) ×N (+) matrices, in which N (+) and N (−) are arbitrary positive integers. In self-evident
notation, the constant diagonal matrix σ takes the form

σ =

(
1N(+)×N(+) 0N(+)×N(−)

0N(−)×N(+) −1N(−)×N(−)

)
, (2.20)

while the arbitrary constant block-diagonal matrices, C(0) and C(1) yield

C(j) =

(
C(j)(+) 0N(+)×N(−)

0N(−)×N(+) C(j)(−)

)
, j = 0, 1, (2.21)

It should be noted that the block-diagonal W = W (x, t) is an auxiliary dependent variable.
It is well known that [A,B] and {A,B} are the commutator AB − BA and anticommutator
AB + BA. The constant coefficient γ is the real dispersion parameter, (γ = γ∗). The coupled
NLS equations obtained by reduction of Eq. (2.18), have been investigated by Calogero and
Degasperis [290]. Moreover, the special case with γ = 0 has been extensively reported [291, 292],
and where boomeronic and trapponic behaviours where found. It is worth noting that by setting
C(1) = cσ and W = 0, the linear terms

[
C(0), Q

]
and σ

[
C(1), Qx

]
can be both transformed by

the obvious transformation [95]

Q (x, t) → Q̂ (x, t) = exp
(
−C(0)t

)
Q (x− 2ct, t) exp

(
C(0)t

)
. (2.22)

Thus, the matrix evolution equation becomes

Qt = −iγσ
(
Qxx − 2Q3

)
. (2.23)

Therefore, Eq. (2.23) stands for the standard matrix version of the NLS equation [95]. How-
ever, whenever C(1) is a generic full block-diagonal matrix (see (2.21)), Eq. (2.18) is the most
general second-order differential equation which genuinely generalizes the standard Eq. (2.23).
That equation can be reformulated to coincide with the standard equations describing the res-
onant interaction of three waves with the remarkable consequence of boomeronic or trapponic
behaviour [292, 293].

The matrix Eq. (2.18) is the compatibility condition for the Lax pair

ψx = Xψ, ψt = Tψ, (2.24)

where ψ, X and T are
(
N (+) +N (−)

)
×
(
N (+) +N (−)

)
square matrices. In Eq. (2.24), ψ =

ψ (x, t, k) is a common solution of the two linear ordinary differential matrices, while X =

X (x, t, k) and T = T (x, t, k) depend on the coordinate x , the time t and the complex spectral
parameter k according to the definitions

X (x, t, k) = ikσ +Q (x, t) ,

T (x, t, k) = 2γk [ikσ +Q (x, t)] + 2ikC(1) + iγσ [Q2 (x, t)−Qx (x, t)]− σW (x, t)

+σ
[
C(1), Q (x, t)

]
+ C(0).

(2.25)
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To simplify the notation of the previous formula, no dimension of the matrices 0 and 1 will be
specified. Hence the omission to write the matrix 1 altogether. Let consider the condition

Q(†) (x, t) = SQ (x, t)S, (2.26)

on the solutionQ (x, t) of the matrix evolution Eq. (2.18), where the dagger stands for Hermitian
conjugation. The constant matrix S is a block-diagonal

S =

(
S(+) 0

0 S(−)

)
, (2.27)

and its off-diagonal blocks are vanishing rectangular matrices while its diagonal blocks S(+) and
S(−) are N (+) ×N (+) and N (−) ×N (−) diagonal matrices, respectively. The diagonal elements
s(±) , with no loss of generality, take the form

s(±) = diag
{
s
(±)
1 , ..., s

(±)

N(±)

}
, s(±)2

n = 1. (2.28)

This imply that S2 = 1, S(+)2 = 1 and S(−)2 = 1. The reduction Eq. (2.27) is well motivated by
the fact that it captures several interesting models of dispersive propagation of multicomponent
waves in weakly nonlinear media. Therefore, the PDEs given in Eq. (2.18) are rewritten in terms
of blocks Q(+), Q(−), W (+) and W (+) ( see Eq. (2.19))as

Q
(±)
t = C(0)(±)Q(±) −Q(±)C(0)(±) ±

[
C(1)(±)Q

(±)
x −Q

(±)
x C(1)(∓)

]
∓
[
W (±)Q(±) +Q(±)W (∓)

]
+ iγ

[
Q

(±)
xx − 2Q(±)Q(∓)Q(±)

]
,

W
(±)
x =

[
C(1)(±), Q(±)Q(∓)

]
,

(2.29)

where C(j)(+) and C(j)(−) are the N (+)×N (+) and N (−)×N (−) constant square matrix blocks of
C(j) (see Eq. (2.21)). The reduction condition (2.21) is taken into account with the introduction
of the dependent variable U = U (x, t) through the definitions [95]

Q(−) (x, t) = U (x, t) , Q(+) (x, t) = S(+)U † (x, t)S(−). (2.30)

Since the constant γ is real, the expressions of Q(+), and Q(−) in terms of the single variable
U (x, t) are compatible with Eqs. (2.29), which are reduced to

Ut = C(0)(−)U − UC(0)(+) −
[
C(1)(−)Ux − UxC

(1)(+)
]

+
[
W (−)U + UW (+)

]
+ iγ

[
Uxx − 2US(+)U †S(−)U

]
,

W
(+)
x =

[
C(1)(+), S(+)U †S(−)U

]
,

W
(−)
x =

[
C(1)(−), US(+)U †S(−)

]
,

(2.31)

where U is an N (−) × N (+) rectangular matrix (see (2.19) and (2.30)), while the auxiliary
variables W (±) (x, t) are square matrices. Then, W (+) and W (−) are N (+)×N (+) and N (−)×N (−)

matrices. The matrices W (±) (x, t) satisfy the Hermitian conditions [95]

W (+) = −S(+)W (+)†S(+), W (−) = −S(−)W (−)†S(−), (2.32)
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hence
W † (x, t) = −SW (x, t)S, (2.33)

Similarly, the constant matrices C(j)(±) satisfy the following conditions

C(j)(±) = −(−)j S(±)C(j)(±)†S(±), j = 0, 1. (2.34)

Concerning the sign of S(+) and S(−) matrices, one could set, for instance, S(+)
1 = 1 with no

loss of generality. Thus, one can keep the symmetrical, notation (2.28).

2.5 Modified Darboux transformation method

The Darboux transformation (DT), originating from the work of Darboux in 1882 on the Sturm-
Liouville equation, is a powerful method for constructing solutions for integrable systems [277].
This analytical method is presented in several monographs by researchers [294, 295, 296]. In
the literature, various approaches have been proposed to find a DT for a given equation, for
instance, the operator factorization method [297], gauge transformation method [296, 298, 299],
and the loop group transformation [300]. The DT is very efficient for construction of soliton
solutions and rational solutions related to rogue waves. Indeed, through iterations, one is often
led to compact representations in terms of special determinants such as the Wronskian or
Grammian for N-soliton solutions [277]. The aim of this section is to present the formulation
of DT for the NLS equation as well as the reformulation of the N-fold generalized DT in terms
of determinants. Thus, formulas for Nth-order rogue wave solutions for the NLS equation have
been derived [277].

2.5.1 Darboux transformation algorithm for the standard nonlinear Schrödinger
equation

The generalized DT enables to obtain, apart from the soliton solutions, rational solutions as
well as multi-rogue-wave solutions [277]. Let consider the focusing NLS equation

iqt +
1

2
qxx + |q|2q = 0. (2.35)

Equation (2.35) is the compatibility condition of the linear spectral problems

ψx = [iςσ1 + iQ]ψ,

ψt =
[
iς2σ1 + iςQ+ 1

2
σ1 (Qx − iQ2)

]
ψ,

(2.36)

where

σ1 =

(
1 0

0 −1

)
, Q =

(
1 q∗
q 1

)
. (2.37)

The DT in this case is defined as [295]

ψ [1] = T [1]ψ, q [1] = q + 2 (ς∗1 − ς1) (P [1])21, (2.38)
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where

T [1] = ς − ς∗1 + (ς∗1 − ς1)P [1] , P [1] =
ψ1ψ

†
1

ψ†
1ψ1

, (2.39)

with ψ1, the special solution of the linear system (2.36) at ς = ζ1. (P [1])21 represents the entry
of matrix P [1] in the second row and first column, and a dagger denotes the matrix transpose
and complex conjugation. If N distinct seed solutions ψk (k = 1, 2, ..., N) are given, the basic
DT may be iterated. To do the second step of transformation, one employs ψ2 which is mapped
to ψ2 [1] = T [1] |ς=ς2ψ2.

ψ [2] = T [2]ψ [1] , q [2] = q [1] + 2 (ς∗2 − ς2) (P [2])21, (2.40)

where

T [2] = ς − ς∗2 + (ς∗2 − ς2)P [2] , P [2] =
ψ2 [1]ψ2[1]

†

ψ2[1]
†ψ2 [2]

, (2.41)

In the general case, one may have the following statements
Theorem 1 Let ψ1, ψ2, . . . , ψN be N at distinct solutions of the spectral problem (2.36) at

ς1, . . . , ςN , respectively. Then, the N-fold DT for the NLS Eq. (2.35), yields

ψ [N ] = T [N ]T [N − 1] · · ·T [1]ψ,

q [N ] = q [0] + 2
N∑
i=1

(ς∗i − ςi) (P [i])21,

(2.42)

with
T [i] = ς − ς∗i + (ς∗i − ςi)P [i] ,

P [i] = ψi[i−1]ψi[i−1]†

ψi[i−1]†ψi[i−1]
,

ψ [i− 1] = (T [i− 1]T [i− 2] · · ·T [1]) |ς=ςiψi,

q [0] = q.

(2.43)

One remarks that, the N-fold DT given by Eq. (2.42) is equivalent to the determinant represen-
tation [248]. To find the generalized DT, one supposes that ψ2 = ψ1 (ς1 + δ) is a special solution
of the system. Then, after transformation, it gives ψ2 [1] = T1 [1]ψ2. Expanding ψ2 and ς1, we
have

ψ1 (ς1 + δ) = ψ1 + ψ
[1]
1 δ + ψ

[2]
1 δ

2 + · · ·+ ψ
[N ]
1 δN + · · · , (2.44)

where

ψ
[k]
1 =

1

k!

∂k

∂ςk
ψ1(ς)ς=ς1 . (2.45)

Through the limit process

lim
δ→0

[T1[1]|ς=ζ+δ]ψ2

δ
= lim

δ→0

[δ+T1[1]|ς=ζ1 ]ψ2

δ
,

ψ1 + T1 [1] |ς=ζ1ψ
[1]
1 ≡ ψ1 [1] .

(2.46)
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Let find the solution of the linear system (2.42) with q1 and ς = ς1. Therefore, the next step of
the DT becomes

T1 [2] = ς − ς∗1 + (ς∗1 − ς1)P1 [2] ,

q [2] = q [1] + 2 (ς∗1 − ς1) (P1 [2])21,

(2.47)

where

P1 [2] =
ψ1 [1]ψ1[1]

†

ψ1[1]
†ψ1 [1]

, (2.48)

Similarly, the limit

lim
δ→0

[δ+T1[2](ς1)][δ+T1[1](ς1)]ψ2

δ2

= ψ1 + [T1 [1] (ς1) + T1 [2] (ς1)]ψ
[1]
1 + T1 [2] (ς1)T1 [1] (ς1)ψ

[2]
1

≡ ψ1 [2] ,

(2.49)

provides us a nontrivial solution for the linear spectral problem with q = q [2] and ς = ς1. Thus,
one may do the third-step iteration of the DT, which can be written as

T1 [3] = ς − ς∗1 + (ς∗1 − ς1)P1 [3] , P13 = ψ1[2]ψ1[2]
†

ψ1[2]
†ψ1[2]

,

q [3] = q [2] + 2 (ς∗1 − ς1) (P1 [3])21,

(2.50)

Continuing the above process and combining all the DT steps, the generalized DT is constructed
and summarized as follows
Theorem 2 Let ψ1 (ς1) , ψ2 (ς2) , · · · , ψn (ςn) be n distinct solutions of the linear spectral

problem (2.36), and

ψ (ςi + δ) = ψi + ψ
[1]
i δ + ψ

[2]
i δ

2 + · · ·+ ψ
[mi]
i δN + · · ·

(i = 1, 2, · · · , n)
(2.51)

be their expansions, where

ψ
[j]
i =

1

j!

∂j

∂ςj
ψi (ς) |ς=ςi (j = 1, 2, · · ·) . (2.52)

Let define
T = ΓnΓn−1 · · ·Γ1Γ0, Γi = Ti [mi] · · ·Ti [1] (i ≥ 1) , Γ0 = I, (2.53)

where
Ti [j] = ς − ς∗i + (ς∗i − ςi) (Pij) , Pi [j] =

ψi[j−1]ψi[j−1]†

ψ1[j−1]†ψi[j−1]
,

1 ≤ j ≤ mi, ψi [0] = (Γi−1 · · ·Γ1Γ0) |ς=ςiψi,

ψi [k] = lim
δ→0

[δ+Ti[k]ς=ςi
]···[δ+Ti[2]ς=ςi

][δ+Ti[1]ς=ςi
]Γi−1(ςi+δ)···Γ1(ςi+δ)Γ0ψi(ςi+δ)

δk
.

(2.54)
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ψi [k] can be written as

ψi [k] = ψi +
k∑
s=1

l∑
j=1

kj+s=k∑
mi≥h

(i)
1 > ...>h

(i)
ki

≥1,

i≥g1> ...>gl≥1,

if g1=i, then h
(1)
1 ≤k

(Tg1

[
h
(1)
1

]
· · ·Tg1

[
h
(1)
k1

]
· · ·Tg1

[
h
(1)
1

]
· · ·Tg1

[
h
(l)
kl

]
)|ς=ςiψ

[s]
i ,

(2.55)
with (1 ≤ k < mi). Then, the transformations

ψ [N ] = Tψ, q [N ] = q + 2
n∑
i=1

mi∑
j=1

(ς∗i − ςi) (Pi [mj])21

(
N = n+

n∑
k=1

mk

)
, (2.56)

constitute a generalized DT for the NLS equation. The solution formulas, (2.42) and (2.56)), rep-
resented in terms of summations, have of special interest. Indeed, for nonzero ψk, k = 1, 2, · · · , N
all the denominators of P [i] and Pi [j] are easily seen to be nonzero in these forms. Therefore,
both (2.42) and (2.56)) supply nonsingular solutions. The former could lead to N-soliton solu-
tions, while the latter may yield rogue wave solutions.

2.5.2 Modified Darboux transformation on nonlinear Schrödinger equation

Let consider an example to illustrate the application of the above formulas to the construction of
second-order rogue wave solutions [277]. To this end, we start with the seed solution q [0] = eit.
Therefore, the corresponding solution for the linear spectral problem at ς = ih is

ψ1 (f) =

(
i
(
C1e

A − C2e
−A) e− 1

2
it(

C2e
A − C1e

−A) e 1
2
it

)
, (2.57)

where

C1 =

(
h−

√
h2 − 1

)1/2
√
h2 − 1

, C2 =

(
h+

√
h2 − 1

)1/2
√
h2 − 1

, A =
√
h2 − 1 (x+ iht) . (2.58)

For h = 1 + f 2, the expansion of the vector function ψ1(f) at f = 0 yields

ψ1(f) = ψ1(0) + ψ
[1]
1 f

2 + · · · , (2.59)

where

ψ1 (0) =

(
i (−2t+ 2ix− i) e−

1
2
it

(2it+ 2x+ 1) e
1
2
it

)
,

ψ
[1]
1 =

( [
i
2
x− 5

2
t+ i

4
− 2tx2 + 2i

3
x3 + 2

3
t3 − 2ixt2 − ix2 + 2tx+ it2

]
e−

1
2
it[

1
2
x+ 5

2
it− 1

4
− 2itx2 + 2

3
x3 − 2

3
it3 − 2xt2 + x2 + 2ixt− t2

]
e

1
2
it

)
.

(2.60)

It can be seen that, ψ1 (0) is a solution of Eqs. (2.36) at ς = i. By means of formula (2.46), one
obtain

ψ1 [1] = lim
δ→0

[if 2 + T1 [1]]ψ1 (f)

f 2
= T1 [1]ψ

[1]
1 + iψ1 [0] , (2.61)
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with

T1 [1] = 2i

(
I − ψ1 (0)ψ1(0)

†

ψ1(0)
†ψ1 (0)

)
. (2.62)

Substituting the above data into Eqs. (2.47) yields the second-order rogue wave solution

q [2] =

[
1 +

G1 + itG2

H

]
eit, (2.63)

where

G1 = 36− 288x2 − 192x4 − 1152t2x2 − 864t2 − 960t4,

G2 = 360 + 576x2 − 192t2 − 384x4 − 768x2t2 − 384t4,

H = 64t6 + 192t4x2 + 432t4 + 396t2x4 − 288t2x2 + 9 + 108x2 + 64x6 + 48x4,

(2.64)

This solution was first constructed by Akhmediev et al. [301]. The higher-order rogue wave
solutions can be constructed in a similar manner.

2.5.3 N-fold Darboux transformation for higher-order rogue waves

A general approach to construct the higher-order rogue waves has been elucidated in the liter-
ature by Matveev et al. [248, 277]. In generic cases, iterated DT may be given compactly by
means of determinants and this is appealing mathematically. For the original DT, formulated
in Eqs. (2.38) and (2.39), the result is well-known [248].
Theorem 3 Denoting ψi = (ψi, ϕi)

T (i = 1, 2, · · · , N), then the N-fold DT between fields,

(2.42), can be reformulated as

q [N ] = q [0]− 2
∆2

∆1

(2.65)

where

∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λN−1
1 ψ1 · · · λN−1

N ψN − λ
∗(N−1)
1 ϕ∗

1 · · · − λ
∗(N−1)
1 ϕ∗

N

· · · · · · · · · · · · · · · · · ·
ψ1 · · · ψN − ϕ∗

1 · · · − ϕ∗
N

λN−1
1 ϕ1 · · · λN−1

N ϕN λ
∗(N−1)
1 ψ∗

1 · · · λ
∗(N−1)
N ψ∗

N

· · · · · · · · · · · · · · · · · ·
ϕ1 · · · ϕN ψ∗

1 · · · ψ∗
N

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∆2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λN1 ϕ1 · · · λNNϕN λ∗N1 ψ∗
1 · · · λ∗N1 ψ∗

N

λN−2
1 ψ1 · · · λN−2

N ψN − λ
∗(N−2)
1 ϕ∗

1 · · · − λ
∗(N−2)
N ϕ∗

N

· · · · · · · · · · · · · · · · · ·
ψ1 · · · ψN − ϕ∗

1 · · · − ϕ∗
N

λN−1
1 ϕ1 · · · λN−1

N ϕN λ
∗(N−1)
1 ψ∗

1 · · · λ
∗(N−1)
N ψ∗

N

· · · · · · · · · · · · · · · · · ·
ϕ1 · · · ϕN ψ∗

1 · · · ψ∗
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.66)
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To find the determinant representations of the generalized DT, one may consider directly, the
limit process (2.47). Then, it follows that

q [2] = q [1] + lim
ς2→ς1

2 (ς∗2 − ς2) (P [2])21. (2.67)

Compare to the case of KdV case worked out by Matveev et al. [248], one may perform the
limit on the determinant form, (2.65), and get the following.
Theorem 4 Assuming that N distinct solutions ψi = (ψi, ϕi)

T (i = 1, 2, · · · , N) given for the

spectral problem, (2.36), at ς = ς1, · · · , ς = ςn and expanding as follows.

(ςi + δ)jψi (ςi + δ) = ςji ψi + ψi [j, 1] δ + ψi [j, 2] δ
2 + · · ·+ ψi [j,mi] δ

mi + · · · ,

(ςi + δ)jϕi (ςi + δ) = ςji ϕi + ϕi [j, 1] δ + ϕi [j, 2] δ
2 + · · ·+ ϕi [j,mi] δ

mi + · · · ,
(2.68)

where
ψi [j,m] =

1

m!

∂m

∂ςm
[
ςjψi (ς)

]
|ς=ςi , ϕi [j,m] =

1

m!

∂m

∂ςm
[
ςjϕi (ς)

]
|ς=ςi . (2.69)

For (j = 0, 1, · · ·N,m = 1, 2, 3, · · ·), one obtains

q [N ] = q − 2
D2

D1

, D2 = det ([H1 · · ·Hn]) , D1 = det ([G1 · · ·Gn]) , (2.70)

where N = n+
n∑
k=1

mk and

Gi =



ςN−1
i ψi · · · ψi [N − 1,mi] − ς

∗(N−1)
i ϕ∗

i · · · − ϕi[N − 1,mi]
∗

· · · · · · · · · · · · · · · · · ·
ψi · · · ϕi [N − 1,mi] − ϕ∗

i · · · − ϕi[0,mi]
∗

ςN−1
i ϕi · · · ϕi [N − 1,mi] ς

∗(N−1)
1 ψ∗

i · · · ψi[N − 1,mi]
∗

· · · · · · · · · · · · · · · · · ·
ϕi · · · ϕi [0,mi] ψ∗

i · · · ψi[0,mi]
∗


,

Hi =



ςNi ϕi · · · ϕi [N,mi] ς∗Ni ψ∗
i · · · ψi[N,mi]

∗

ςN−2
i ψi · · · ψi [N − 2,mi] − ς

∗(N−2)
i ϕ∗

i · · · − ϕi[N − 2,mi]
∗

· · · · · · · · · · · · · · · · · ·
ψi · · · ψi [0,mi] − ϕ∗

i · · · − ϕi[0,mi]
∗

ςN−1
i ϕi · · · ϕi [N − 1,mi] ς

∗(N−1)
i ψ∗

i · · · ψi[N − 1,mi]
∗

· · · · · · · · · · · · · · · · · ·
ϕi · · · ϕi [0,mi] ψ∗

i · · · ψi[0,mi]
∗


.

(2.71)

The matrices Gi and Hi, when applied to the special seed solutions (2.70), enable to have a
determinant form for higher-order rogue wave solutions. So doing, one considers

ψ1 = i
(
C1e

A − C2e
−A) , ϕ1 =

(
C2e

A − C1e
−A) , (2.72)
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where

C1 =

(
1+f2−f

√
2+f2

)1/2

f
√

2+f2
, C2 =

(
1+f2+f

√
2+f2

)1/2

f
√

2+f2
,

A = f
√

2 + f 2 [x+ i (1 + f 2) t+ Φ(f)] ,Φ (f) =
N∑
i=0

sif
2i, si ∈ C.

(2.73)

The associated Taylor expansions give

ij(1 + f 2)
j
ψ1 (f) = ijψ1 (0) + ψ1 [j, 1] f

2 + · · ·+ ψ1 [j,N ] f 2N + · · · ,

ψ1 [j, n] =
1

(2n)!
∂2n

∂f2n

[
ij(1 + f 2)

j
ψ1 (f)

]
|f=0,

ij(1 + f 2)
j
ϕ1 (f) = ijϕ1 (0) + ϕ1 [j, 1] f

2 + · · ·+ ϕ1 [j,N ] f 2N + · · · ,

ϕ1 [j, n] =
1

(2n)!
∂2n

∂f2n

[
ij(1 + f 2)

j
ϕ1 (f)

]
|f=0.

(2.74)

For (j = 0, · · · , N, n = 1, 2, 3, · · ·), it follows that the Nth-order rogue wave solution for the
NLS equation (2.35) yields

q [N ] =

[
1− 2

D2

D1

]
eit, (2.75)

where

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

iN−1ψ1 · · · ψ1 [N − 1, N − 1] − (−i)N−1ϕ∗
1 · · · − ϕ1[N − 1, N − 1]∗

· · · · · · · · · · · · · · · · · ·
ψ1 · · · ψ1 [0, N − 1] − ϕ∗

1 · · · − ϕ1[0, N − 1]∗

iN−1ϕ1 · · · ϕ1 [N − 1, N − 1] − iN−1ψ∗
1 · · · ψ1[N − 1, N − 1]∗

· · · · · · · · · · · · · · · · · ·
ϕ1 · · · ϕ1 [0, N − 1] − ψ∗

1 · · · − ψ1[0, N − 1]∗

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

D2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iNϕ1 · · · ϕ1 [N,N − 1] (−i)Nψ∗
1 · · · − ϕ1[N,N − 1]∗

iN−2ψ1 · · · ψ1 [N − 2, N − 1] − (−i)(N−1)ϕ∗
1 · · · − ϕ1[N − 2, N − 1]∗

· · · · · · · · · · · · · · · · · ·
ψ1 · · · ψ1 [0, N − 1] − ϕ∗

1 · · · − ϕ1[0, N − 1]∗

iN−1ϕ1 · · · ϕ1 [N − 1, N − 1] − (−i)N−1ψ∗
1 · · · ψ1[N − 1, N − 1]∗

· · · · · · · · · · · · · · · · · ·
ϕ1 · · · ϕ1 [0, N − 1] ψ∗

1 · · · ψ1[0, N − 1]∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.76)
For the case where N = 2, the above formula may provide the second-order rogue wave solution
with two free parameters for the NLS equation [302]. It is well noted that this solution splits into
three first-order rogue waves rather than two. Indeed, these results supply the high-order rogue
wave solutions with more free parameters, which determine the spatial-temporal structures of
the solutions. Moreover, the third-order rogue wave solution, may be worked out by setting
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N = 3 and Φ (f) = (b+ ic) f 2 + (e+ ig) f 4 in the above formula, whose explicit expression is
omitted here.

2.6 Dressing-Darboux transformation method

Many nonlinear wave equations, with various degrees of novel mathematical features and ap-
plicative interests were found by extending and generalizing the method of the spectral trans-
form [251, 303]. Among these integrable equations, the most notable one with great importance
is the standard NLS equation. This, due to its integrability [73] and universality [304] which
are related consequences of a perturbative multiscale analysis of (i.e large class) of dispersive
nonlinear wave equations [305]. The key property of integrable evolution PDEs is that they ex-
press the condition that two linear differential equations (Lax pair), both for the same unknown
function and whose coefficients depend also on a complex (spectral) parameter, are compatible
with each other. The compatibility of the Lax pair is a local condition and it provides local
properties of the associated integrable PDE, in particular local conservation laws (continuity
equations) and Hamiltonian structures. The construction of solutions of integrable nonlinear
PDEs is, however, a different matter. In fact, in addition to the initial value, one has to specify
the domain of the space variable x together with the values which the solution (and/or its x-
derivatives) takes on the domain boundary. Once the (appropriate) boundary values are fixed,
then one should make use of the Lax pair to solve the Cauchy initial value problem or, more
modestly, to construct special solutions [95]. Historically, the spectral technique was first ap-
plied on the KdV equation to solve the initial-value problem in the space domain with vanishing
values at the boundary, x = ±∞. Later, the same spectral technique was applied by Zakharov
and Shabat to a different Lax pair to solve the initial-value problem for the standard NLS equa-
tion on the entire real x-axis and for both vanishing [73] and nonvanishing [306] values at the
boundary x = ±∞. Both vanishing and nonvanishing boundary values are relevant in nonlinear
optics where, "bright" special solutions usually referred to the vanishing boundary values, as
they are light-pulse in a dark background, on the one hand, and "dark" special solutions to
nonvanishing boundary values, as they are dark-pulse in a light background, on the other hand.
Thus, the DDT method yields a new (dressed) solution from a given (naked or seed) solution of
the system of wave equations of interest. Therefore, the DDT may be formulated as a change
of the Lax pair of linear equations via a transformation which adds one pole to the dependence
of its solution on the complex spectral variable [96].

2.6.1 Dressing-Darboux transformation algorithm

Let focus our attention to the method of construction of special solutions of the general system
(2.31). Let note that the reduction conditions (2.26), (2.33), (2.34), together with expressions
(2.25) of the matrices X (x, t, k) and T (x, t, k) in the Lax pair Eq. (2.24), entail the following
relations

X†(k∗)
∑

+
∑

X(k) = 0, T †(k∗)
∑

+
∑

T (k) = 0 (2.77)
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with ∑
= σS =

(
S(+) 0

0 −S(−)

)
,

2∑
= 1. (2.78)

In the notation used in (2.77), one omits writing the dependence on the variables x and t

and maintains this omission in the following whenever it will cause no confusion. The property
(2.77) allows to express the reduction condition induced by (2.26), (2.33), (2.34) on the solution
ψ(k) of the two linear equations of the Lax pair (2.24) by the following equation

ψ† (x, t, k)
∑

ψ (x, t, k) = A (k, k∗) , (2.79)

where the matrix A (k, k∗) is constant, namely x and t independent. Therefore, it is plain that
the value of A (k, k∗) depends only on the arbitrary value ψ (x0, t0, k) that the solution ψ takes
at a given point (x0, t0) of the (x, t) plane.

Let consider now a second pair of matrices Q(0) (x, t) and W (0) (x, t), and assume that they
have the same block structure of Q andW as shown in Eq. (2.19), and satisfy the same reduction
conditions given in Eqs. (2.26) and (2.33). Let ψ(0) (x, t, k) be a corresponding nonsingular (i.e.
with nonvanishing determinant) matrix solution of Eq. (2.24)

ψ(0)
x = X(0)ψ(0), ψ

(0)
t = T (0)ψ(0), (2.80)

with X(0) (x, t, k) and T (0) (x, t, k) having expressions (2.25) with Q and W replaced by Q(0)

and W (0). Assume also that the initial condition ψ(0) (x0, t0, k) is so chosen that the constant
matrix A(0) (k, k∗), where of course (see (2.79))

A(0) (k, k∗) = ψ(0)† (x, t, k∗)
∑

ψ(0) (x, t, k) , (2.81)

coincides with A (k, k∗), i.e. A(0) (k, k∗) = A (k, k∗). Since both compatibility conditions, ψ(0)
xt =

ψ
(0)
tx and ψxt = ψtx, are satisfied, Q(0) (x, t), W (0) (x, t) and Q (x, t), W (x, t) are two different

solutions of the same matrix evolution Eq. (2.18), and therefore it follows that the matrix

D (x, t, k) = ψ (x, t, k)
(
ψ(0) (x, t, k)

)(−1)
, (2.82)

satisfies the differential equations

Dx = XD −DX(0), Dt = TD +DT (0), (2.83)

together with the algebraic (reduction) equation

D†(k∗)
∑

D(k) =
∑

. (2.84)

The proof of these propositions is straightforward.
Definition of Eq. (2.82) can be viewed as a transformation of ψ(0) into ψ

ψ (x, t, k) = D (x, t, k)ψ(0) (x, t, k) , (2.85)

which consequently yields a transformation of Q(0) and W (0) into, Q and W , respectively.
Therefore, the dressing approach requires in the first place an explicit knowledge of Q(0) (x, t),

70



W (0) (x, t) and ψ(0) (x, t, k). The next step is the construction of the transformation matrix
D (x, t, k) via the integration of the ODEs (2.83). This task is however not straightforward
since the coefficients X and T of these differential equations depend on the unknown matrices
Q and W (see (2.25)). The way of solving this problem goes through the priori assignment of
the dependence of the transformation matrix D (x, t, k) on the spectral variable k.

In what follows, one investigates the set of k−dependent matrices D(k) which (i) have
a rational dependence on the complex variable k and (ii) have nonvanishing k → ∞ limit.
Moreover, if we consider a rational dependence on k which can be factorized as product of
simple-pole terms, we need to deal only with matrices D(k) which take the following one-pole
expression

D (x, t, k) = 1 +
R (x, t)

k − α
, (2.86)

where the matrix R (x, t) is the residue at the pole k = α and the value of D(k) in the
k → ∞ limit is taken to be the identity for the sake of simplicity. The transformation (2.85)

characterized by the matrix (2.86) has received considerable attention in the literature [248,
307, 308]. We refer to it as Darboux-dressing transformation (DDT), and its existence in our
setting is proved below by construction.

The way to obtain an explicit expression of the residue matrix R (x, t) depends on whether
the pole α is off the real axis, α ̸= α∗, or on the real axis, α = α∗. Therefore, we treat these
two cases separately.

2.6.2 Dressing-Darboux transformation: complex pole

Let consider the case where α is not real, α ̸= α∗, while the other case, α real, is discussed
in the next subsection. The starting point is the requirement that the matrix D(x, t, k) (see
(2.86)) satisfies the algebraic condition (2.84) and the differential equations (2.83). The algebraic
condition entails the two (equivalent) equations∑

R +
R†∑R

α− α∗ = 0, R†
∑

−R
†∑R

α− α∗ = 0, (2.87)

whose solution is
R (x, t) = (α− α∗)P (x, t) , (2.88)

where the matrix P (x, t) is a projector with the "Hermitianity" condition

P 2 = P, P † =
∑

P
∑

. (2.89)

As for the differential equations (2.83), replacing D(x, t, k) with its expression (2.86) and (2.88)

yields the algebraic relations

Q = Q(0) − i (α− α∗) [σ, P ] ,

W = W (0) + i (α− α∗)
[
C(1), {σ, P}

]
,

(2.90)
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which give the "dressed" matrices Q and W in terms of the bare matrices Q(0), W (0) and the
projector P , together with the two differential equations

Px = X(α)P − PX(0)(α), Pt = T (α)P − PT (0)(α), (2.91)

whose integration goes as follows. Consider first the differential equation (2.91) with respect to
the variable x and replace Q with its expression in Eq. (2.90). The resulting equation is then
the following nonlinear equation

Px = X(0)(α)P − PX(0)(α)− i (α− α∗) (σP − PσP ) . (2.92)

Let z be an eigenvector of P , and differentiate with respect to x the eigenvalue equation

Pz = z, (2.93)

By replacing then, Px with the right-hand side of (2.92), one arrives at the equation

(1− P )
[
zx −X(0)(α∗)z

]
= 0, (2.94)

which implies that the vector zx − X(0)(α∗)z is in the subspace on which P projects. At this
point, we may well assume that this subspace is one-dimensional. Indeed, it is easy to prove
that, if P projects on a subspace of higher dimension n > 1, then, the corresponding matrix D
is a product of as many matrices D(j) of the form (2.86) with (2.88)

D(j) (x, t, k) = 1 +
(α− α∗) p(j) (x, t)

k − α
, j = 1, ..., n, (2.95)

as the dimension n of this subspace, all of course with the same pole in α, and all with P (j)

projecting on a one-dimensional subspace. Therefore, with no loss of generality, we let P in the
DDT matrix

D (x, t, k) = 1 +
(α− α∗) p (x, t)

k − α
, (2.96)

project on the one-dimensional subspace of the vector z, with the implication (see (2.94)) that
the vector zx −X(0)(α∗)z is proportional to z. On the other hand, since the vector z is defined
here modulo a scalar factor function, one may choose this factor in such a way that z satisfies
the differential equation

zx = X(0)(α∗)z. (2.97)

The differential equation (2.91) with respect to the variable t can be treated in a similar way.
The substitution of Q and W with their expressions (2.90) yields the nonlinear equation

Pt = T (0)(α)P − PT (0)(α)− 2γ (α− α∗)
(
Q(0)P − PQ(0)P

)
−2iγ (α2 − α∗2) (σP − PσP )− 2i (α− α∗)

[
C(1), P

]
P.

(2.98)

By differentiating now the eigenvalue Eq. (2.93) with respect to t and using both Eqs. (2.93)
and (2.98), one ends up with the equation

(1− P )
[
zt − T (0)(α∗)z

]
= 0, (2.99)
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which, by the same arguments as above, implies that the vector z(x, t) satisfies the differential
equation

zt − T (0)(α∗)z. (2.100)

Once the two Eqs. (2.97) and Eq. (2.100) are solved, the DDT transformation matrix
D(x, t, k) is finally given by Eq. (2.96) with

P (x, t) =
z (x, t) z† (x, t)

∑
⟨z (x, t)

∑
z (x, t)⟩

. (2.101)

This expression is implied by the algebraic conditions (2.89). At this point, we conclude that
the method of construction of a novel solution Q(x, t), W (x, t) of the evolution Eqs. (2.18),
starting from the knowledge of given (seed) solution Q(0) (x, t), W (0) (x, t), is explicitly given
by Eqs. (2.90) with (2.101), where the vector z(x, t) is

z (x, t) = ψ(0) (x, t, α∗) z0. (2.102)

Here, ψ(0) (x, t, α∗) is the solution ψ(0) (x, t, k) of the differential Eqs. (2.80) (Lax pair corre-
sponding to Q(0) (x, t), W (0) (x, t)), for k = α∗, and it is assumed to be known, while z0 is an
arbitrary constant

(
N (+) +N (−)

)
-dimensional vector.

The construction of the novel solution Q(x, t), W (x, t) provides, via formulae (2.19) and
reduction (2.30), the construction of the novel solution U(x, t), W (±) (x, t) of the matrix evolu-
tion Eqs. (2.31) which is our main concern here. The relevant expressions are obtained by first
writing the block structure of the

(
N (+) +N (−)

)
×
(
N (+) +N (−)

)
projector matrix P (x, t)

P =

(
B(+) S(+)BS(−)

B B(−)

)
, (2.103)

which therefore entails, in self-evident notation and by using Eqs. (2.90), the relations yield

U = U (0) + 2i (α− α∗)B,

W (+) =W (0)(+) + 2i (α− α∗)
[
C(1)(+), B(+)

]
,

W (−) =W (0)(−) − 2i (α− α∗)
[
C(1)(−), B(−)

]
.

(2.104)

In view of its use in computations, one gives to this formula a more explicit expression by using
the form (2.101) of the projector P . To this aim, it is convenient to split the vector z in two
block column vectors, namely

z =

(
z(+)

z(−)

)
, (2.105)

where the vectors z(+) and z(−) have dimensions N (+) and N (−), respectively. Then, by inserting
this block form of z in the diadic expression of P , (2.101) (and recalling (2.78)), one arrives at
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the final relations

U = U (0) + 2i (α− α∗) z(−)z(+)†S(+)

⟨z(+),S(+)z(+)⟩−⟨z(−),S(−)z(−)⟩ ,

W (+) =W (0)(+) + 2i (α− α∗)
(C(1)(+)z(+)z(+)†S(+)−z(+)z(+)†S(+)C(1)(+))

⟨z(+),S(+)z(+)⟩−⟨z(−),S(−)z(−)⟩

W (−) =W (0)(−) − 2i (α− α∗)
(C(1)(−)z(−)z(−)†S(−)−z(−)z(−)†S(−)C(1)(−))

⟨z(+),S(+)z(+)⟩−⟨z(−),S(−)z(−)⟩ .

(2.106)

2.6.3 Dressing-Darboux transformation: real pole

Let now investigate the alternative case in which the pole of the Darboux-dressing matrix
D(x, t, k) (see (2.82)) is real, α = α∗. The way to treat this case is the same as that one we
followed in the previous case, but the resulting equations to be solved are indeed different.
Thus, we first ask that D(x, t, k), as given by the general expression (2.86), satisfies both the
algebraic condition (2.84) and the differential Eqs. (2.83). The algebraic condition implies two
equations for the residue matrix R∑

R +R†
∑

= 0, R†
∑

R = 0. (2.107)

These entail the following form of R,

R (x, t) = iρ (x, t) P̂ (x, t)
∑

, (2.108)

together with the conditions that the scalar function ρ (x, t) is real, the projector matrix P̂ is
Hermitian

ρ = ρ∗, P̂ 2 = P̂ , P̂ = P̂ †, (2.109)

and it satisfies the equation
P̂
∑

P̂ = 0. (2.110)

Therefore, in the present case, the transformation matrix (2.86) reads

D (x, t) = 1 + iρ (x, t)
P̂ (x, t)

∑
k − α

. (2.111)

By the same arguments, let consider as in the previous case, that P̂ may be assumed, with no
loss of generality, to project on a one-dimensional subspace, namely

P̂ =
ẑẑ†

⟨ẑ, ẑ⟩
, (2.112)

where the vector ẑ (x, t), because of Eq. (2.110), is constrained by the orthogonality condition⟨
ẑ,
∑

ẑ
⟩
= 0. (2.113)
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Let Consider now the differential equations (2.83) and insert in expression (2.111). Since k is
of course, an arbitrary complex variable, one obtains the relations

Q = Q(0) + ρ
[
σ, P̂

]∑
,

W =W (0) + ρ
[
{σ, P}

∑
, C(1)

]
,

(2.114)

which give the novel solutionQ(x, t),W (x, t) of (2.18) in terms of the supposedly known solution
Q(0) (x, t), W (0) (x, t), the function ρ (x, t) and the projector P̂ (x, t). There, also follows the
relation

T (α)− T (0)(α) = 4γαρ
[
σ, P̂

]∑
−2iγρ

[
Q(0), P̂

∑]
+ 2iγρ2

g

f
P̂
∑

+2ρσ
[
C(1), σP̂

∑]
,

(2.115)
which is not an independent relation but it is instrumental in deriving formula (2.117) displayed
below. In addition, one obtains two following differential equations, one with respect to x(

ρP̂
)
x
= ρ

(
X(0)(α)P̂ + P̂X(0)†(α)− ρ

g

f
P̂

)
, (2.116)

and the other with respect to t(
ρP̂
)
t
= ρ

(
T (0)(α)P̂ + P̂ T (0)†(α)− 4αγρ

g

f
P̂ + 2iγρ

h

f
P̂ − 2ρ

m

f
P̂

)
. (2.117)

In these last three equations, one conveniently introduces the functions f(x, t), g(x, t), h(x, t)
and m(x, t) according to the definitions

f = ⟨ẑ, ẑ⟩ , g = ⟨ẑ, Sẑ⟩ , h =
⟨
ẑ,
∑

Q(0)ẑ
⟩
, m =

⟨
ẑ,
∑

C(1)ẑ
⟩
. (2.118)

One obtains the right-hand side of the differential equation (2.117) by using relation (2.115).
At this point, we differentiate the eigenvalue equation (see (2.112))

P̂ ẑ = ẑ. (2.119)

When this is done, with respect to x, one obtains the equation

P̂
[
ẑx +X(0)(α)†ẑ

]
= ẑx −X(0)(α)ẑ +

(
ρx
ρ

+ ρ
g

f

)
ẑ, (2.120)

which implies that, its right-hand side is proportional to the vector ẑ

ẑx −X(0)(α)ẑ +

(
ρx
ρ

+ ρ
g

f

)
ẑ = µẑ. (2.121)

One more, the vector ẑ, which has been introduced through the diadic expression (2.112), is
defined only modulo a factor scalar function, and therefore, by taking advantage of this freedom,
one can ask that

µ =
ρx
ρ

+ ρ
g

f
, (2.122)
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with the implication that the vector ẑ satisfies the differential equation

ẑx = X(0)(α)ẑ. (2.123)

One observes that the function µ, via its own definition

P̂
[
ẑx +X(0)(α)†ẑ

]
= µẑ, (2.124)

takes the following expression

µ =
1

f

⟨
ẑ, ẑx +X(0)(α)†ẑ

⟩
=

1

f
(⟨ẑ, ẑx⟩+ ⟨ẑx, ẑ⟩) =

fx
f
, (2.125)

where we have taken into account Eq. (2.123) and the definition of f (2.118). It is now read-
ily found that combining this equation with relation (2.122) entails that the function ρ (x, t)

satisfies the following differential equation(
f

ρ

)
x

= g. (2.126)

Let differentiate the eigenvalue Eq. (2.119) with respect to t. Following the same strategy as
before, one concludes that the vector ẑ satisfies the differential equation

ẑt = T (0)(α)ẑ, (2.127)

while the following relations hold true

P̂
[
ẑt+ T (0)(α)†ẑ

]
= νẑ,

ν = ρt
ρ
+ 2 ρ

f
(2αγg − iγh+m) .

(2.128)

Again, Eqs. (2.128) imply the expression

ν =
1

f

⟨
ẑ, ẑt + T (0)(α)†ẑ

⟩
=

1

f
(⟨ẑ, ẑt⟩+ ⟨ẑt, ẑ⟩) =

ft
f
, (2.129)

and the differential equation (
f

ρ

)
t

= 2 (2αγg − iγh+m) , (2.130)

respectively, for the function ρ(x, t) with respect to the variable t. Since the vector ẑ(x, t)
satisfies the two (compatible) differential Eqs. (2.123) and (2.127), its general expression is

ẑ (x, t) = ψ(0) (x, t, α) ẑ0, (2.131)

where ẑ0 is an arbitrary constant
(
N (+) +N (−)

)
-dimensional vector. The two differential Eqs.

(2.126) and (2.130), which are also compatible with each other (the proof is straightforward
and it is not reported here), can be easily integrated since the functions f , g, h and m are
known (see (2.118)). The expression of their general solution then reads

ρ (x, t) =
f (x, t){

f(x0,t0)
ρ(x0,t0)

+ 2
t∫
t0

dt′ [2αγg (x0, t′)− iγh (x0, t′) +m (x0, t′)] +
x∫
x0

dx′g (x′, t)

} , (2.132)
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where x0, t0 and ρ (x0, t0) are arbitrary real constants.
One concludes that if Q(0) (x, t), W (0) (x, t) and ψ(0) (x, t, k) are known, the explicit expres-

sions of ρ (x, t) and ẑ(x, t) given above yield, via (2.111) and (2.112), the DDT matrix and
therefore the new solution Q(x, t), W (x, t) through (2.114). As in the previous case, the corre-
sponding formulae which give the expression of the solutions U(x, t), W (±) (x, t) of Eqs. (2.31)
follow from the block structure of Q and W , of

∑
, of the projector P̂ ,

P̂ =

(
B̂(+) B̂†

B̂ B̂(−)

)
, (2.133)

and of the vector ẑ

ẑ =

(
ẑ(+)

ẑ(−)

)
. (2.134)

The relevant relations then read
U = U (0) − 2ρB̂S(+),

W (+) =W (0)(+) − 2ρ
[
C(1)(+), B(+)S(+)

]
,

W (−) =W (0)(−) − 2ρ
[
C(1)(−), B(−)S(−)

]
,

(2.135)

or, equivalently (see (2.112) , (2.133) and (2.134)) and more explicitly

U = U (0) − 2ρ ẑ(−)ẑ(+)†S(+)

⟨ẑ(+),ẑ(+)⟩+⟨ẑ(−),ẑ(−)⟩ ,

W (+) =W (0)(+) − 2ρ
(C(1)(+)ẑ(+)ẑ(+)†S(+)−ẑ(+)ẑ(+)†S(+)C(1)(+))

⟨ẑ(+),ẑ(+)⟩+⟨ẑ(−),ẑ(−)⟩ ,

W (−) =W (0)(−) − 2ρ
(C(1)(−)ẑ(−)ẑ(−)†S(+)−ẑ(−)ẑ(−)†S(−)C(1)(−))

⟨ẑ(+),ẑ(+)⟩+⟨ẑ(−),ẑ(−)⟩ ,

(2.136)

where the expression of ρ = ρ (x, t) is given by (2.132) with (see (2.118))

f (x, t) =
⟨
ẑ(+), ẑ(+)

⟩
+
⟨
ẑ(−), ẑ(−)

⟩
,

g (x, t) =
⟨
ẑ(+), S(+)ẑ(+)

⟩
+
⟨
ẑ(−), S(−)ẑ(−)

⟩
,

h(x, t) =
⟨
ẑ(+), U (0)†S(−)ẑ(−)

⟩
−
⟨
ẑ(−), S(−)U (0)ẑ(+)

⟩
,

m (x, t) =
⟨
ẑ(+), S(+)C(1)(+)ẑ(+)

⟩
−
⟨
ẑ(−), S(−)C(1)(−)ẑ(−)

⟩
.

(2.137)

To end, this subsection notice that the explicit formulae derived here and in the complex
pole are meant to serve as the main tools to construct soliton and rogue wave solutions, and by
repeated application of DDTs, multisoliton and higher-order rogue wave solutions of the matrix
Eqs. (2.31). However, these formulae have been obtained by algebra and local integration of
differential equations. One trusts that, new equations can be derived, based on the same DDT
technique to find explicit solutions for potential applications in optics.
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2.7 Numerical computation methods

Numerical computations play an important role in the study of nonlinear waves. In recent years,
great advances have been made on numerical methods for nonlinear wave equations, and many
highly accurate and efficient numerical techniques have been developed. One can mentioned
the Petviashvili method and the accelerated imaginary-time evolution method (AITEM) which
generally converge to the ground states of a linear waves system and diverge for excited states.
Moreover, some numerical algorithms such as squared-operator iteration methods (SOM) and
Newton conjugate-gradient (Newton-CG) methods were derived to converge for both ground
states and excited states. Thus, many numerical methods have been applied in the literature
to confront the analytical and experimental results. Among them, one denotes those which are
commonly employed in the modelling of nonlinear beam propagation, that are, the split-step
methods (first-order and fourth-order split-step methods) [187] and the finite difference meth-
ods [187] which have been modified to be adequate to nonlinear wave propagation equation
with higher-order effects. Hence, the derivation of the Modified split-step method [187] and the
difference-differential equation method [187]. In addition, some convenient commercial software
for scientific computing (such as MATLAB) have also become available, which greatly facili-
tated the coding and implementation of some numerical algorithms such as the pseudospectral
method, split-step methods, integrating factor method [187] and so on. It has been shown
that high overall accuracy can be achieved, in various spectral methods when coupling with
high-order time-stepping schemes such as Runge-Kutta methods [187]. Due to the accuracy, nu-
merical stability and convergence of one pseudospectral method namely, difference-differential
equation method. This approach has been chosen to compute the NLS models for a purely
matter of convenience.

2.7.1 Pseudospectral method

One of the first spectral methods derived for numerical computations of wave equations is the
pseudospectral method. This method was first derived in 1971 by Orszag [309] and by Fornberg
and Whitham in 1978 [310] for early applications, then by Gottlieb and Orszag in 1977 [311],
Fornberg in 1998 [312], Trefethen in 2000 [313], and finally by Boyd in 2001 [314] for more
explanations. To describe this method, let consider a standard NLS equation bellow

iut + uxx + 2|u|2u = 0. (2.138)

The basic of the pseudospectral method is to use the discrete Fourier transform to evaluate the
spatial derivative un,xx and use any appropriate time-stepping scheme such as Runge-Kutta to
advance in time. So doing, the discretization of Eq. (2.138) in space becomes

un,t = i
(
un,xx + 2|un|2un

)
, (2.139)

where un is the solution on a grid point xn . Then, the computation of the spatial derivative
un,xx yields

un,xx = F−1
[
(ik)2F (un)

]
, (2.140)
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where F and F−1 are the discrete Fourier and inverse Fourier transforms, respectively. k is
the wave number. It has been shown in the literature [313, 314] that the discretization error
is smaller than any power of spatial spacing ∆x. Therefore, one can confirm that the accuracy
of the computation of the spatial derivative is spectral for a smooth function u (x, t). This is
due to the fact that the discretized function has a finite spectral bandwidth of [−π/∆x, π/∆x],
while the continuous function has an infinite spectral. Moreover, energy in high wave numbers
is smaller than any inverse power of the wave number, which can be proved by repeated use
of integration by parts to the Fourier transform formula. In the case where the function u(x)

is extended to an analytical function in a horizontal strip of the complex x plane, then, this
discretization error decays exponentially with ∆x due to the Paley-Wiener theorem [313]. Hav-
ing un,xx, the discretized Eq. (2.139) can be advanced in time by a time-stepping scheme of the
fourth-order Runge-Kutta method for a fourth-order temporal accuracy.

2.7.2 Stability condition of the pseudospectral method

The pseudospectral method has a numerical stability restriction on the time-step size ∆t. This
method is stable if eigenvalues of the linearized spatial discretization operator, when multiplied
by ∆t, absolutely lie in the stability region of the time-stepping scheme [313]. For small various
spacing ∆x, the largest eigenvalues of the linearized spatial discretization operator of Eq. (2.139)
yield ±iπ2/∆x. Those eigenvalues are induced on the one hand, by the spatial derivative term
i∂xx of the NLS Eq. (2.139) and on the other hand by the highest wave numbers ±π/∆x. As
the stability region on the imaginary axis is bounded in interval ±2

√
2i, the stability condition

of the pseudospectral method is given by

∆t

∆x2
≤ 2

√
2

π2
. (2.141)

Equation (2.141) is the necessary and sufficient stability condition of the pseudospectral method
based on NLS Eq. (2.139). The fourth-order Runge-Kutta method associated to the pseudospec-
tral algorithm should also obey to the same stability condition (2.141).

In summary, the pseudospectral method is highly accurate and easy to implement for any
wave equation and in any dimension. Nevertheless, it should be noted that, for some extended
nonlinear NLS equation as the nonparaxial NLS equation, this stability condition is not any
more valid when violated by the time-step size ∆t. Hence, the derivation of the difference-
differential equation method [61].

2.7.3 Difference-differential equation method

The difference-differential equation method is a nonparaxial beam propagation method that
overcomes spurious oscillations in the solution. To describe this method, let consider the non-
paraxial NLS equation in a self-focusing Kerr medium

K
∂2u

∂ζ2
+ i

∂u

∂ζ2
+

1

2

∂2u

∂ξ2
+ |u|2u = 0, (2.142)
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where u (ξ, ζ) is the scalar envelope field of a continuous wave beam experiencing linear diffrac-
tion in one transverse dimension. ζ and ξ are longitudinal and transverse coordinates, respec-
tively. This method requires the employ of finite difference formulae to approximate derivatives
with respect to the propagation direction ζ in Eq. (2.142). Then, due to the difficulties resulting
from the finite difference representation on transverse derivative uξξ in Eq. (2.142), the diffrac-
tion operator is implemented in the spectral domain. Thus, the finite difference formulae of the
nonparaxial and propagation terms are written as follows[

∂2u(ξ,ζ)
∂ζ2

]
ζ=n∆ζ

= un+1(ξ)−2un(ξ)+un−1(ξ)
∆ζ2

+O(∆ζ2)

[
∂u(ξ,ζ)
∂ζ

]
ζ=n∆ζ

= un+1(ξ)−un−1(ξ)
2∆ζ

+O(∆ζ2),

(2.143)

where un(ξ) ≡ u (ξ, n∆ζ). Therefore, the substitution on these formulae in Eq. (2.142) yields

un+1(ξ) =
1

(2K + i∆ζ)

[(
4K −∆ζ2

∂2

∂ζ2
− 2∆ζ2|un(ξ)|2

)
un(ξ)− (2K − i∆ζ)un−1(ξ)

]
.

(2.144)
Equation (2.144) is the difference-differential equation and defines the explicit algorithm in
which the transverse differential operator ∂2/∂ξ2 can be compute efficiently by using FFTs as
shown in the description of the pseudospectral method. The accuracy and the convergence of
the difference-differential equation method has been analyzed in the literature [61].

As output, the difference-differential equation method has more general applicability with
high accuracy and employs an explicit finite difference scheme in longitudinal direction. The
resulting solution can contain both forward-and backward waves which can be filtered out indi-
vidually without affecting the integrity of the exact solution and the conservation of energy in
the system. Moreover, it has the advantage of being explicit. Hence, the simple implementation
and low computation load in the solution of nonparaxial NLS equation [61]. More importantly,
the difference-differential approach is flexible in the modeling of extended nonparaxial NLS
equation with higher-order effects and can be used with much greater confidence [61].

2.8 Conclusion

This chapter describes the analytical and numerical methods used in the study of generation
and propagation of rogue waves in optical fibers and chiral media. Among analytical meth-
ods, the similarity transformation, the mDT and DDT methods have played an important role
and are of special interest, in the study of optical rogue wave phenomena. The importance of
similarity transformation has been shown for nonintegrable NLS models. Moreover, a comple-
mentarity between the similarity transformation, Lax Pair method and mDT or DDT methods
has been revealed to be benefit on construction of rogue wave prototypes. This combination of
methods has been revealed to be powerful in the finding of rogue wave solutions. This, due to
their accuracy and simplicity. In addition to this, another complementarity has been shown for
numerical computations. It concerns the pseudospectral method related to FFTs and Runge-
Kutta method which were used to compute efficiently the diffractions in the spectral domain.
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Moreover, the difference-difference method that has a wider applicability on nonparaxial beam
propagation methods, has been adopted as the numerical computation key for nonparaxial NLS
models.
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Chapter 3

Results and Discussions

3.1 Introduction

In this chapter, a particular attention is focused on the effect of nonparaxiality on rogue wave
propagation in optical Kerr media, to solve the problem of controllability in the nonparaxial
approximation. Then, the derivation of the two-dimensional NLS equation in chiral optical
fibers is presented. The symmetry reduction and the mDT are used to generate the analytical
chiral optical rogue wave solutions in the presence and in the absence of management. Then,
the influence of optical activity on optical rogue wave propagation is presented, showing their
possible control in chiral media. The exact solutions of the chiral CNLS equations with coupled
space-dependence coupling field are constructed. Then, the physical properties of vector rogue
waves with mixed polarization in chiral optical fiber are given. Then, the nonparaxial chiral
optical rogue waves with modulated coefficients are constructed with the mDT method. An
investigation on the dynamical behavior and features of nonparaxial chiral optical rogue waves
is made and the influence of combined effects of nonparaxiality, optical activity and walk-off
on their propagation is revealed through the vector nonparaxial chiral NLS equations with
constant and modulated coefficients. Lastly, an extended NLS model is introduced and the
integrability constraints are presented. Then, the first-and second-order rogue wave solutions
are investigated analytically by the mDT and numerically by the difference-differential equation
method. Moreover, the contrast of optical activity through the rogue wave profiles is shown
and the interplay of chiral materials is elucidated. The chapter ends with the summarize of the
outcomes.

3.2 Nonparaxial rogue waves in optical Kerr media

The generation of solitons in optical fibers, predicted by Hasegawa and Tappert [77] through
the balance between the pulse broadening due to self-phase modulation and compression due
to negative group velocity dispersion (GVD), has enabled the generation of stable picosecond
and subpicosecond pulses in the near infrared. In a weakly nonlinear, dispersive medium, the
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dynamics of the pulse envelope is governed, in the paraxial approximation, by the cubic nonlin-
ear Schrödinger (NLS) equation [77]. An important property of NLS equation solitons is that
they emerge from particular initial profiles as long as a particular threshold condition is met.
As a consequence, it is possible to experimentally observe solitons when neither the initial pulse
amplitude nor the initial pulse shape corresponds to a pure soliton. Therefore, verification of
many of the predicted soliton pulse characteristics was carried out in a series of experiments by
Mollenauer and co-workers [78, 79, 80]. Temporal, spatial and spatiotemporal optical solitons
can find applications, which range from all-optical routing, to transparent beam interconnects,
to the massive integration of optical operations in a fully three-dimensional environment. In
fact, light is self-guiding in bulk media, which have modes with numerical apertures that vio-
late the paraxial approximation. We recall that the paraxial approximation is valid when the
radius of the beam is sufficiently large compared to the wavelength. Nonparaxiality may arise in
the miniaturization of devices and in other configurations, such as those involving multiplexed
beams [87]. Analytical and numerical studies of nonparaxial bright and dark solitons in optical
Kerr media have been reported in the literature [60, 62, 315]. The focusing NLS equation, which
describes generic nonlinear phenomena, supports a whole hierarchy of recently discovered Pere-
grine soliton or rational solutions [14, 39], Ma soliton [199] and Akhmediev breathers [41, 316].
Although solitary by nature, these rational solutions or rogue waves are different from the usual
solitons, in that they are rare, short lived, and unstable. They can emerge from a turbulent state
of random fields, while ordinary solitons are stable waves with characteristic collision properties,
commonly appearing in deterministic setting of nonlinear evolution partial differential equa-
tions. Rogue waves are giant single waves that may suddenly appear in oceans [15]. In recent
years, the idea of rogue waves have been extended far beyond oceanic expanses. The concept has
been applied to pulses emerging from optical fibres [15, 19, 21, 39, 110, 235, 317, 318, 319, 320],
waves in Bose-Einstein condensates [23], in superfluids [317], in optical cavities [21], in the
atmosphere [31] and even in finance [34]. In particular, rogue wave solutions emerging from
optical fibers, have analytically been found for many types of generalized NLS models such
as NLS models with constant coefficients [39, 63] and NLS models with varying coefficients
[14, 64]. Recently, this interesting phenomenon of optical rogue waves has been experimentally
verified [19, 321]. According to the controllability of rogue waves, which have been studied be-
fore [322, 323, 324, 325, 326, 327], the problem now is what waves, which are localized both in
space and time and depict a unique event that appears from nowhere and disappears without
a trace [12], can exist in the presence of the GVD and Kerr nonlinearity in the nonparaxial
approximation.

3.2.1 Model

The complex envelope of the optical field ψ (z, x) of a continuous-wave beam liable to a lin-
ear diffraction in one transverse dimension in isotropic Kerr media moves according to the
nonparaxial NLS equation in the form [315]

dψzz + iψz + pψxx + q|ψ|2ψ = 0, (3.1)
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where z and x are the longitudinal and transverse coordinates, respectively,

x = x̃/r0, z = z̃/2LDF , ψ =
√
2n2/n0r0k0Ã, (3.2)

where r0 is the input beam radius with diffraction length LDF = k0r0
2, k0 is the linear wave

number, n0 is the linear index of refraction, n2 is the Kerr coefficient, Ã (x, z) is unscaled field
assumed to be slowly varying and d = 1

(r0k0)
2 is the nonparaxiality parameter. The parameters

p and q are related to the GVD and Kerr nonlinearity, respectively. Equation (3.1) quantifies
changes in the transverse profile of a light beam with respect to a forward-propagating reference
frame and can be seen as the nonparaxial NLS equation. This equation has been used in the
literature [60, 62, 328, 329] for fixed values of the dimensionless parameters p and q.

In the presence of management, the optical pulse propagation in Kerr media can be described
by the nonparaxial NLS equation with variable coefficients, in the form (see Appendix (A18))

d(z)ψzz + iψz + p(z)ψxx + q(z)|ψ|2ψ = 0, (3.3)

Here z is taken as time parameter. The variable coefficients d(z), p(z) and q(z) which are
functions of the propagation distance z, are related to the nonparaxiality, GVD and Kerr
nonlinearity, respectively.

3.2.2 Similarity transformation

Inspired by the previous work of Yan and Dai [71], the envelope field is taken in the form

ψ (z, x) = ρ (z)V (Z(z), X(z, x)) exp (iφ (z, x)) , (3.4)

to investigate the rational solutions related to nonparaxial rogue waves, where ρ (z) is the ampli-
tude, Z(z) the effective propagation distance, X(z, x) the similitude variable, V [Z(z), X(z, x)]

the complex field. The variable φ (z, x) is the phase of the wave. This form of envelope field is
also known as the similarity transformation or the symmetry reduction method. This method
which is also based on the self-similarity of some specific partial differential equations, has
been applied in NLS equations to search the exact and the asymptotic self-similar solutions
[330, 331, 332]. Equation (3.3) is not integrable because of varying dispersion, non-linearity
and nonparaxiality coefficients. This equation governs the nonlinear wave propagation in an
inhomogeneous optical fiber system. To construct the exact analytical solutions of Eq. (3.3),
one should transform and reduce it into an integrable differential equation: the standard NLS
equation. In what follows, the symmetry transformation method is used to obtain the integra-
bility conditions. This approach of exact analytical solution has more attractive properties than
those of soliton because its reduces interaction and smaller peak power than that of the soliton
[333] and allows a possible pedestal-free pulse compression [334]. Notice that the similarity and
the modified Darboux transformation methods are analytical methods that enable to construct
rational solutions related to rogue waves.

Substituting Eq. (3.4) into Eq. (3.3) gives a couple system of partial differential equations
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with variable coefficients

ρzV + 2pρXxφxVX + ρZzVZ + ρXzVX + 2ρdφzXzVX + pρφxxV

+ρdV φzz + 2dρzV φz + 2ρdφzZzVZ = 0,
(3.5)

dρzzV + 2dρzZzVZ + 2dρzXzVX + ρdZz
2VZZ + 2dρZzXzVZX

+ρdZzzVZ + ρdXz
2VXX + dρXzzVX − dρV φz

2 − ρV φz + pρXx
2VXX

+pρXxxVx − pρV φx
2 + q|ρ|2|V |2ρV = 0.

(3.6)

According to previous works [14, 64], one considers the above symmetry reduction or similarity
transformation (3.4) that would reduce Eq. (3.3) to the standard NLS equation

iψz +
1

2
ψxx + |ψ|2ψ = 0. (3.7)

By connecting the solutions of Eq. (3.3) with those of the above standard NLS equation, the
complex field V [Z(z), X(z, x)] should satisfy that equation in the form

i
∂V

∂Z
+

1

2

∂2V

∂X2
+ |V |2V = 0. (3.8)

With V [Z(z), X(z, x)] satisfying the relation (3.8), one deduces after the symmetry reduction
of Eqs. (3.5) and (3.6)

d(z)Xzz + p(z)Xxx = 0, (3.9)

q(z)ρ2 + Zz = 0, (3.10)

Zz + d(z)φzZz = 0, (3.11)
1

2
Zz + p(z)Xx

2 + d(z)Xz
2 = 0, (3.12)

φz + d(z)φz
2 + p(z)φx

2 = 0, (3.13)

ρz + ρ (p(z)φxx + d(z)φzz) + 2d(z)ρzφz = 0, (3.14)

ρzzV + 2ρzZzVZ + 2ρzXzVX + ρZz
2VZZ + 2ρZzXzVZX + ρZzzVZ = 0. (3.15)

3.2.3 Rational solutions of the nonparaxial nonlinear Schrödinger equation with
variable coefficients

The resolution of system (3.9)−(3.15) starts by solving Eq. (3.9). To look for rational solutions,
several conditions are imposed

Zz = −1
2
p(z)Xx

2, q(z) = 1
2
p(z)ρ(z)−2Xx

2, Xx = α(z), (3.16)

which verify Eq. (3.10). The above parameters can generate the constraints for the variable
Z(z) and the nonlinear Kerr coefficient q(z). More specifically, it follows that

Xx = α(z), Xxx = 0. (3.17)
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As d(z) ̸= 0 and p(z) ̸= 0, Eq. (3.9) leads to the condition Xzz = 0, which implies that
αzz = δzz = 0. So, from relations (3.17), one obtains

X(z, x) = α(z)x+ δ(z), (3.18)

where α(z) is the inverse of the wave width and δ(z) the position of its center of mass
(−δ(z)/α(z)). Quantities α(z) and δ(z) are free functions of z. From condition (3.16), the
effective dimensionless propagation distance yields

Z(z) = −1

2

z∫
0

p(s)α(s)2ds. (3.19)

Substituting Eq. (3.16) into Eq. (3.12), leads to

Xz
2 = −3p(z)α(z)2

4d(z)
. (3.20)

The relation above is true for d(z) < 0 or p(z) < 0. In this work , one chooses p(z) < 0. For
Zz ̸= 0, Eq. (3.11) becomes

φz = − 1

d(z)
. (3.21)

Substituting Eq. (3.21) into Eq. (3.13) gives the phase expression

φx = 0, φxx = 0, φ(z, x) = −
z∫
0

1
d(s)

ds+ φ0(x), (3.22)

where φ0(x) is a constant. From Eq. (3.14), one arrives at

ρ(z) = ρ0 exp


z∫

0

γ(s)ds

 , (3.23)

which is the amplitude of the wave, assumed to be a real function, and where γ(s), leads to

γ(s) = d(s)φzz. (3.24)

Here, ρ0 is a constant. Now let deduce the Kerr coefficient given by

q(z) =
1

2

p(s)α(s)2

ρ02e
2

z∫
0

γ(s)ds

. (3.25)

For the defined values of d(z), p(z), α(z) and δ(z), the expressions of X(z, x), Z(z), ρ(z), φ(z, x)
and q(z) can be derived. The variable V [Z(z), X(z, x)] is determined by the modified Darboux
transformation [24, 63, 94, 335]. The first-order of the standard NLS equation given by Eq.
(3.1) was found by Peregrine [39] and the second-order was proposed by Soto-Crespo et al. [11].
According to the modified Darboux transformation, one obtains the first-and the second-order
of rational solutions.
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If one set V [Z(z), X(z, x)] = Ψ [Z(z), X(z, x)], the first-order presented in Ref. [14, 39] is
given by

Ψ1 = V1 =

[
1− G1 + iZ(z)H1

1 + 2X2 + 4Z2

]
exp i {Z(z)} , (3.26)

where
G1 = 4, H1 = 8, D1 = 1 + 2X2 + 4Z2. (3.27)

This solution is known as the Peregrine soliton [39] when the correspondence Z = z and
X = x

√
2 are considered. Then, collecting the partial solutions together, the construction of

the first-order rational solution related to the exact nonparaxial rogue wave solution of Eq.
(3.3) yields

ψ1 = ρ0 exp

{
z∫
0

γ(s)ds

}[
1− 4 1+2iZ(z)

1+2X(z,x)2+4Z(z)2

]
exp i {Z(z) + φ(z, x)} . (3.28)

The intensity of the first order non-paraxial rogue wave is given by

|ψ1|2 = ρ0
2 exp

{
2
z∫
0

γ(s)ds

}(
(2X2+4Z2−3)

2
+64Z2

(1+2X2+4Z2)2

)
. (3.29)

This first-order rational solution is used to describe the dynamics of rogue wave in optical
fibers. This solution is used to show the effect of the nonparaxiality on rogue wave propagation
and then to present the different cases in which the choice of parameters of the original Eq.
(3.3) leads to the control of rogue waves. The second-order rogue wave presented in Ref. [14] is
given by

Ψ2 = V2 =

[
1 +

G2 + iZ(z)H2

D2

]
exp i {Z(z)} , (3.30)

where G2, H2 and D2 are given by the relations

G2 =
3
8
− 3

2
X2 − 1

2
X4 − 9Z2 − 10Z4 − 6X2Z2,

H2 =
15
4
+ 3X2 −X4 − 2Z2 − 4Z4 − 4X2Z2,

D2 =
3
32

+ 9
16
X2 + 1

8
X4 + 1

12
X6 + 33

8
Z2 + 9

2
Z4 + 2

3
Z6 − 3

2
X2Z2 + 1

2
X4Z2 +X2Z4.

(3.31)

According to the same correspondence of variables z and x as on the first-order, this solution
is the one found by Soto-Crespo et al. [11]. Collecting the partial solutions together, the final
second-order rational solution related to the exact nonparaxial rogue wave solution of Eq. (3.3)
is constructed

ψ2 = ρ0 exp

{
z∫
0

γ(s)ds

}[
1 + G2+iZ(z)H2

D2

]
exp i {Z(z) + φ(z, x)} . (3.32)

The intensity of the second-order nonparaxial rogue wave solution is

|ψ2|2 = ρ0
2 exp

2

z∫
0

γ(s)ds


(
(D2 +G2)

2 + Z2H2
2

D2
2

)
. (3.33)
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This second-order rational solution is more precise than the first one. It describes the dynamics
of two rogue waves propagating in optical fiber as well as collisions between them. This solution
is used to illustrate the effect of the nonparaxiality on rogue wave collisions.

3.2.4 Effect of the nonparaxiality on the propagation of rogue waves in optical
fiber

To illustrate the effect of the nonparaxiality on the propagation of rogue waves related to the
first-and second-order rational solutions, let fix values of parameters ρ0 = 1. Then follows the
presentation of managed cases, in which the choice of parameter functions leads to the controlled
of rogue waves.

A. Influence of polynomial function on nonparaxial rogue waves

The goal now is to choose appropriately, free functions d(z), P (z), α(z) and δ(z) to generate
abundant structures of nonparaxial rogue waves. They are chosen as polynomial functions. Let
keep in mind that parameters are chosen in order to be bounded in the intervals −5 < z < 5

and −5 < x < 5.
For the chosen coefficients and free functions

d(z) = z
4
, p(z) = − z2

4
, α(z) = 1, δ(z) = z. (3.34)

The wave propagations is presented in Figs. 29, in three-dimension (3D) [Fig. 29(a)] and (2D)
[Figs. 29(b) and 29(c)] representations showing the nonparaxial effects, respectively. For the
given parameters

d(z) = 1
4
, p(z) = − z2

4
, α(z) = 1, δ(z) = z. (3.35)

Figure 30 depicts the dynamics of the first-order rational solution for the intensity |ψ1(x, z)|2

in 3D [Fig. 30(a)] and 2D [Figs. 30(b) and 30(c)] representations illustrating the nonparaxial
effects on the propagation of rogue waves.

Here the intensity of the first-and second-order rational solutions is plotted with the help
of MATLAB. One can see in Figs. 29 and 30 that the behavior of nonparaxial rogue waves
is more surrounded in Fig. 29 than in Fig. 30. One observes that the space where the usual
rogue waves reach their maximum moves from the center to the periphery on Fig. 29. So,
the usual symmetry of Peregrine soliton is absent in Fig. 29 with nonparaxial parameter d(z)
taken as polynomial function and present in Fig. 30 with d(z) taken as a constant. This means
that the choice of nonparaxial parameter d(z), given in relation (3.34) is appropriate to obtain
particularities of non-paraxial effects. The intensity profile of Fig 29 increases rapidly than the
ones of usual cases in paraxial approximation. It follows that the nonparaxiality increases the
length and reduces the width of the wave peak simultaneously. It is also responsible for the
unusual symmetry of Peregrine soliton (rogue waves) in Fig. 29.

B. Influence of Jacobian elliptic functions on nonparaxial rogue waves

One shows the influence of polynomial functions given to d(z), p(z), α(z) and δ(z) on the
structure of nonparaxial rogue waves. In what follows, let choose them now as Jacobian elliptic
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Figure 29: Wave propagation in 2D and 3D representation of the first order rational solution for the intensity |ψ1(x, z)|2

with d(z) = z
4
; p(z) = − z2

4
; α(z) = 1 and δ(z) = z.
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Figure 30: Wave propagation in 2D and 3D representation of the first order rational solution for the intensity |ψ1(x, z)|2

with d(z) = 1
4
; p(z) = − z2

4
; α(z) = 1 and δ(z) = z.
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functions. When k is weaker than one, the approximative formulas of Jacobian elliptic functions
[336] are given by

dn(z, k) ≈ 1− k2 sin (z)2

2
,

cn(z, k) ≈ cos(z)− k2 sin(z)
(
z−sin(z) cos(z)

4

)
,

sn(z, k) ≈ sin(z)− k2 cos(z)
(
z−sin(z) cos(z)

4

)
.

(3.36)

Here, let choose k = 0.6. If one sets coefficients and free functions as

d(z) = cn(z, k), p(z) = −1
2
sn (k, z) , α(z) = z, δ(z) = z, (3.37)

one can obtain the 3D and 2D representation profiles in Figs. 31(a) and 31(c), respectively,
showing the nonparaxial effects on rogue waves.
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Figure 31: Wave propagation in 2D and 3D representation of the first order rational solution for the intensity |ψ1(x, z)|2

with d(z) = cn(z, k); p(z) = − 1
2
sn (k, z); α(z) = z and δ(z) = z.

Figures 31(a) − 31(c) depict the behavior of nonparaxial rogue waves with d(z) and p(z)

taken as Jacobian elliptic functions. The profiles show waves with usual symmetry along the z
direction. The intensity profiles of the nonparaxial rogue waves given on Figs. 31(a) and 31(c)

show how they are localized in z direction (with z taken as time parameter). These waves appear
spontaneously and decrease rapidly as shown on previous works [14, 63, 337, 338].

Having completed with the first-order, let study the dynamic behavior of the nonparaxial
effect on the propagation of nonparaxial rogue waves related to the second-order rational solu-
tions. Here the parameters that were used to plot the first-order rational solutions are also used
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to obtain the intensity profiles of the second-order. So from Eq. (3.34), the nonparaxial effects
on rogue waves are shown in 3D [Fig. 32] and 2D [Figs. 32(b) and 32(c)] representations.

(a) (b)
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z (c)

Figure 32: Wave propagation in 2D and 3D representation of the second order rational solution for the intensity
|ψ2(x, z)|2 with d(z) = z

4
; p(z) = − z2

4
; α(z) = 1 and δ(z) = z.

It follows from Eq. (3.35) that Fig. 33 reveals the nonparaxiality effect [Figs. 33(a) and
33(b)]. The intensity profiles of Figs. 32 and 33 are remarkably similar to Figs. 29 and 30.
Nevertheless, one records a difference, particularly notable in the number of collisions and
peaks near to the periphery of the center. In the same way, the Jacobian elliptic functions are
used to plot the profiles of second-order. By using Eq. (3.37), one obtains Figs. 34(a)− 34(c),
showing the influence of the nonparaxiality on rogue waves.

In Fig. 34 many collisions can be seen between waves. An unusual symmetry of nonparaxial
rogue waves in Fig. 34(a) is observed. The wave peak of Fig. 34(c) splits into two and this
split is due to the diffraction effect in lossy medium. It is noted that in the presence of the
nonparaxiality, the collisions between waves are rare but significant when they appear [see Figs.
34(a) and 34(b)].

3.3 Influence of optical activity on rogue waves propagating in chiral
optical fibers

Recently, propagation phenomena of solitons [77, 78, 79, 80, 339] and vector solitons [340,
341, 342] in nonlinear media with natural or induced linear optical activity [81, 82, 84, 85, 86]
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Figure 33: Wave propagation in 2D and 3D of the second order rational solution for the intensity |ψ2(x, z)|2 with
d(z) = 1

4
; p(z) = − z2

4
; α(z) = 1 and δ(z) = z.
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Figure 34: Wave propagation in 2D and 3D representation of the second order rational solution for the intensity
|ψ2(x, z)|2 with d(z) = cn(z, k); p(z) = − 1

2
sn (k, z); α(z) = z and δ(z) = z.
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have attracted more attention and have lead to important advances from the fundamental and
technological point of view. More recently in optics, the study of propagation [343, 344] in
birefringent optical fibers allows to introduce the concept of shape-changing solitons that share
energy among themselves during propagation. So, when two optical waves copropagate inside
a birefringent single-mode fiber, their states of polarization change during propagation as a
result of optically induced nonlinear birefringence. This polarization instability manifests itself
as large changes in the output state of polarization, when the input power or the polarization
state is changed slightly [345]. Those optical activities are the consequence of intrinsic linear
birefringence [346] or circular birefringence [83] known as natural chirality or artificial chirality.
The natural chirality is caused by the spatial dispersion of optical response either in chiral
molecules or in chiral arrangements of molecules and the artificial chirality is induced by struc-
tural chirality, i.e., by artificially chiral structural features in subwavelength scale. This notion
of chirality refers to the lack of bilateral symmetry of an object and can be considered as a
purely geometric property of a medium. So, chirality is a geometrical concept that describes the
inability of an object and its mirror image to be superimposed solely through translations and
rotations. This asymmetry of chiral molecules gives rise to optical rotation, which is an example
of circular birefringence with the material possessing a different refractive index for right-hand
circularly polarized and left-hand circularly polarized light. This fact is expected to play an
important role in the potential application of the chiral media in the microwave and optical
regimes. In fact, several nonlinear phenomena in chiral media [81, 82, 83, 84, 85, 86, 347] have
been studied over the last decade for many applications and the principle problem in working
with a chiral medium is on the control of chirality level. After some investigations, it has been
suggested that the use of chiral material in optical fibers may be studied with polymer optical
fibers [348, 349]. But after some experimental studies, scientists show that, because of organic
nature of most chiral materials, some of them are not indicated at the processing temperature
of silica and soft glasses; they will simply be damaged. In order to solve this problem, some
investigations on the controllability of spontaneous waves in optical fiber have been done [350].
Among various solutions of spontaneous waves, the PS [39], ABs [41], and KM solitons [351]
are considered as theoretical prototypes to describe the interesting phenomenon of rogue waves.

3.3.1 Derivation of the nonlinear Schrödinger equation in chiral optical fibers

The phenomenological theory based on the Beltrami-Maxwell formalism extended to nonlinear
chiral medium [82] has given rise to new effect of great significance in chiral applications. First
observed in optical activity, chirality corresponds to the rotation of the polarization plane in a
linear isotropic material. In an anisotropic cubic media, we add to the polarization P and/or to
the magnetization M , an additional term Tc proportional to ∇⃗ × H⃗ which measure per units
length, the chirality. The spatial chirality effect in a medium is characterized through the Born-
Fedorov formalism, based on the predicted Maxwell’s equations. In chiral optical fibers, the
Born-Fedorov equations are the most adequate for the study of optical activity. As they satisfy
to the edge conditions [352], this allows the characterisation of the nonlinear chiral medium by
the given equations [82, 84, 85]
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D⃗ = εnE⃗ + ε0Tc∇⃗ × E⃗,

B⃗ = µ0

(
H⃗ + Tc∇⃗ × H⃗

)
,

(3.38)

where the flux densities D⃗ and B⃗ arise in response to the electric and magnetic field E⃗ and H⃗
propagating in the chiral medium with εn = ε0+ε2

∣∣∣E⃗∣∣∣. Here ε0 and ε2 are linear and nonlinear
permittivity, respectively. µ0 is the permeability and Tc the chiral parameter of the optical fiber.
In our medium, the predicted Maxwell equations are

∇⃗ · D⃗ = ρV , ∇⃗ · B⃗ = 0,

∇⃗ × E⃗ = −∂B⃗
∂t
, ∇⃗ × H⃗ = J⃗ + ∂D⃗

∂t
,

(3.39)

where, the current density J⃗ = σE⃗ and the charge density ρ represents the sources for the elec-
tromagnetic field. The quantity σ is the electrical conductivity and V the volume. Substituting
Eq. (3.38) into Eq. (3.39), gives the following wave equation

∇⃗2E⃗ + µ0ε0Tc
2 ∂2∇2E⃗

∂t2
= µ0ε0

∂2E⃗
∂t2

+ µ0σ
∂E⃗
∂t

+ µ0ε2

∣∣∣E⃗∣∣∣ ∂2E⃗∂t2 + 2µ0ε0Tc∇⃗ × ∂2E⃗
∂t2

+µ0ε2Tc

∣∣∣E⃗∣∣∣2∇⃗ × ∂2E⃗
∂t2

+ µ0σTc∇⃗ × ∂E⃗
∂t
.

(3.40)

The optical field E⃗ is represented by a right-(R) or left-hand (L) polarizations in the z direction
as

E⃗ (r⃗, t) = (x̂∓ jŷ) A⃗ (r⃗, t) exp [−j (K±z − ω0t)]

= ψ⃗R,L exp [−j (K±z − ω0t)] ,
(3.41)

where ψ⃗R,L is the complex envelope of the optical field in the nonlinear chiral medium, K the
wave number and ω0 the frequency.

After evaluation of different derivations of E⃗ in x, y and z directions in Eq. (3.40), one
neglects the second-order terms and suppose that the wave is propagating in z direction. This
implies that

Kx = Ky = 0, Ez = 0. (3.42)

Considering the slowly varying envelope of the amplitude, we can do the paraxial approximation
bellow ∣∣∣∂2Ex

∂z2

∣∣∣ << ∣∣2jKz
∂Ex

∂z

∣∣ , ∣∣∣∂2Ey

∂z2

∣∣∣ << ∣∣∣2jKz
∂Ey

∂z

∣∣∣ . (3.43)

The final result of Eq. (3.40), after approximations, stands for (see the Appendix (B18))

j ∂ϕ
∂z′

+ 1
2
K ′′ ∂2ϕ

∂t′2
− j 1

6
K ′′′ ∂3ϕ

∂t′3
+ j ωα

2K0
(1∓KTc)ϕ− βω2

2K0
(1∓KTc) |ϕ|2ϕ∓K2Tcϕ+ j ωβ

K0
|ϕ|2 ∂ϕ

∂t′
= 0,

(3.44)
where K ′ = ∂K

∂ω
= 1

vg
is the inverse of group-velocity, K ′′ = ∂K′

∂ω
is the group-velocity dispersion

coefficient which takes the plus and minus signs (±), representing the anomalous and normal
dispersion regimes, respectively. The parameter K ′′′ = ∂K′′

∂ω
is the TOD term. In the fourth

term, the attenuation coefficient α is weighted towards the chiral parameter Tc. The factor to
|ϕ|2ϕ is the SPM and the term K2Tcϕ occurs as an additional correction to the chirality of the
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fiber. The last term has the physical sense of SS and is necessary to perform the description of
spontaneous waves.

The new variables, namely

q = ω0
2/3β1/3

(2K0)
1/3 ϕ, ξ = ω0

2/3β1/3

(2K0)
1/3 z

′, τ = ω0
1/3β1/6

√
K′′(2K0)

1/6 t
′, Γ = ω0

1/3α

(2K0)
1/3β1/3

,

γ = β1/6K′′′

6K′′
ω0

1/3√
(2K0)

1/3K′′
, C = 1∓ TcK, D = K2Tc(2K0)

1/3

β1/3ω0
2/3 , α3 =

(2K0)
5/6β1/6

√
K′′ω0

2/3K0
,

(3.45)

allow to express Eq. (3.44) in the form

j ∂q
∂ξ

+ 1
2
∂2q
∂τ2

− jγ ∂
3q
∂τ3

+ jCΓq ∓Dq − C|q|2q + jα3|q|2 ∂q∂τ = 0. (3.46)

Equation (3.46) is the NLS equation for a chiral optical fiber. This generalized chiral NLS
equation can be used to describe the propagation of right-hand(+) and left-hand(-) hand po-
larized rogue waves in a higher-order dispersive and nonlinear chiral optical fiber. For α3 = 0,
one obtains another form of NLS equation for a chiral optical fiber without the SS term [82].
For Tc = 0, C = 1, D = 0, γ = 0 and Γ = 0, Eq. (3.46) stands for the standard NLS equation.

If one set q (ξ, τ) = ψ (ξ, τ), φ = 1
2

and µ = CΓ, the model becomes

j ∂ψ
∂ξ

+ φ∂2ψ
∂τ2

− jγ ∂
3ψ
∂τ3

+ jµψ ∓Dψ − C|ψ|2ψ + jα3|ψ|2 ∂ψ∂τ = 0. (3.47)

One should keep in mind that the controllability condition should be verified in Eq. (3.47).
With the aim of taking into account the missing condition of controllability (on higher-order
NLS models) Yan et al. [71] showed that the sum of parameters related to the SS, that is, a2
and to the SFS, that is, a3 should be zero: a2 + a3 = 0. To achieve this aim, let write the sum
of the SS (α3) and the SFS (α4) in the following form

j
[
α3

(
|ψ|2ψ

)
τ
+ α4ψ

(
|ψ|2

)
τ

]
= j

[
α3|ψ|2ψτ + (α3 + α4)ψ

(
|ψ|2

)
τ

]
, (3.48)

and let α3 + α4 = 0; it will remain another term of SS given by jα3|ψ|2ψτ . Thus, the assumption
of controllability is verified by the model given in Eq. (3.47). Our main aim now is to find the
rational solutions of Eq. (3.47) with variable and constant coefficients which may be useful to
control the propagation of chiral optical rogue waves.

3.3.2 Symmetry reduction of the chiral nonlinear Schrödinger equation with vari-
able coefficients

In the presence of management in Eq. (3.47), the optical pulse propagation in chiral media can
be described by the chiral NLS equation with variable coefficients, in the form

j
∂ψ

∂ξ
+ φ(ξ)

∂2ψ

∂τ 2
− jγ(ξ)

∂3ψ

∂τ 3
+ jµ(ξ)ψ ∓D(ξ)ψ − C(ξ)|ψ|2ψ + jα3(ξ)|ψ|2

∂ψ

∂τ
= 0, (3.49)

where τ is taken as time parameter and ξ as spatial parameter. The variable coefficients φ(ξ),
γ(ξ), µ(ξ), D(ξ), C(ξ) and α3(ξ) are related to the GVD, TOD, the gain and loss term of the
induced optical activity, linear birefringence, SPM and SS coefficients, respectively.
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Since Eq. (3.49) has varying coefficients, it becomes not integrable and this strongly affects
the wave propagation in chiral optical fiber. In order to solve this problem of non integrability
of the model, one can either use the symmetry reduction method using third-order propagation
vector field [275] or the envelope field in gauge form [276] to obtain the integrability conditions.
This method has been applied in NLS models to look for exact analytical solutions and is the
most adequate method for the construction of rogue wave solutions. From this preliminary
method, varying coefficients are obtained but the complex field is deduced from the modified
Darboux transformation or from the Lax pair method [277]. In what follows, the envelope field
is used in the form [64, 71, 353]

ψ (ξ, τ) = A(ξ)V [Z(ξ), T (ξ, τ)] exp {iρ (ξ, τ)} , (3.50)

to construct the rational solutions related to chiral optical rogue waves, where A(ξ) is the ampli-
tude, Z(ξ) the effective propagation distance, T (ξ, τ) the similitude variable, V [Z(ξ), T (ξ, τ)]

the complex field. The variable ρ (ξ, τ) is the phase of the wave. This form of envelope field is
also known as the similarity transformation or the reduction method. Substituting Eq. (3.50)
into Eq. (3.49) gives a couple system of partial differential equations with variable coefficients

−γAVTTτττ + 3γAV Tτρτ
2 + AVTTξ + AVTTτρτ − γAVTTTTτ

3 + 3γAV ρττρτ
+AξV + µV + AVZZξ + φAV ρττ + α3A

2|V |2AVTTτ − 3γAVTTTτTττ = 0,
(3.51)

−AV ρξ + φAVTTTτ
2 + φAVTTττ − φAV ρτ

2 + γAV ρτττ + 3γAVTTττρτ + 3γAVTTτρττ
−γAV ρτ 3 + 3γAVTTTτ

2ρτ − α3A
2|V |2AVTρτ ∓DAV − CA2|V |2AV = 0.

(3.52)
To simplify the script of differential equations above, let write A (ξ) = A, Z (ξ) = Z, T (ξ, τ) =

T , ρ (ξ, τ) = ρ. According to previous works [64, 71], let use the symmetry transformation given
by Eq. (3.50) that would reduce Eq. (3.49) to the integrable Hirota equation in the form [116]

i
∂V

∂Z
= −∂

2V

∂T 2
+G|V |2V + 2

√
2iν

(
∂3V

∂T 3
+ 3|V |2∂V

∂T

)
. (3.53)

In the case of rogue waves finding, we take G = −1. The parameter ν is a real constant. With
V [Z(ξ), T (ξ, τ)] satisfying the relation (3.53), the similarity reduction of Eqs. (3.51) and (3.52)
leads to

γ (ξ)TτTττ = 0, (3.54)

φ (ξ)Tττ + 3γ (ξ) (Tττρτ + Tτρττ ) = 0, (3.55)

∓D (ξ) + ρξ + φ (ξ) ρτ
2 + γ (ξ)

(
ρτ

3 − ρτττ
)
= 0, (3.56)

Aξ + A (φ (ξ) ρττ + 3γ (ξ) ρττρτ + µ (ξ)) = 0, (3.57)
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Tξ + Tτρτ − γ (ξ)
(
Tτττ − 3Tτρτ

2
)
= 0, (3.58)

Zξ + Tτ
2 (φ (ξ) + 3γ (ξ) ρτ ) = 0, (3.59)

γ (ξ)Tτ
3 + 2

√
2νZξ = 0, (3.60)

A2 (C (ξ) + α3(ξ)ρτ ) +GZξ = 0, (3.61)

α3(ξ)A
2Tτ − 6

√
2νZξ = 0. (3.62)

Here, the subscripts ξ and τ , denote spatial and temporal derivatives, respectively.

3.3.3 First-and second-order of the chiral nonlinear Schrödinger equation with
variable and constant coefficients

The resolution of the system (3.54)− (3.62) yields for γ(ξ) ̸= 0 and TτTττ = 0 to the similarity
variable

T (ξ, τ) = T1(ξ)τ + T0(ξ), (3.63)

where T1ξ(ξ) = 0. The substitution of Eq. (3.63) into Eq. (3.55) tends to 3γ(ξ)Tτρττ = 0. As
γ(ξ) ̸= 0 , T1(ξ) ̸= 0 and ρττ = 0, the phase can be written as

ρ (ξ, τ) = ρ1(ξ)τ + ρ0(ξ), (3.64)

where ρ1ξ(ξ) = 0.
From Eq. (3.60), the effective propagation distance Z(ξ) will be

Z(ξ) = −
√
2

4ν

ξ∫
0

γ(s)T1(s)
3ds. (3.65)

Equation (3.59) stands for

φ (ξ) = −γ(ξ)
(
3ρ1(ξ)−

T1(ξ)

2
√
2ν

)
. (3.66)

Through Eq. (3.58), one arrives at

γ (ξ) = −
(
T0ξ(ξ) + T1(ξ)ρ1(ξ)

3T1(ξ)ρ12(ξ)

)
. (3.67)

Relation (3.57) is transformed to

A(ξ) = A0 exp

−
ξ∫

0

µ(s)ds

 , (3.68)

97



where, A0 is a constant. The result coming from Eq. (3.58), is out to be

∓D (ξ) = −
{
γ(ξ)ρ1

2(ξ)

(
2ρ1(ξ)−

T1(ξ)

2
√
2ν

)
− ρ0ξ(ξ)

}
, (3.69)

with D− (ξ) = −D+ (ξ) . Equation (3.62) gives the result

α3(ξ) = −3γ(ξ)T1
2(ξ)A−2(ξ). (3.70)

Through relation (3.61), one finds that

C(ξ) = γ(ξ)T1
2(ξ)

(
3ρ1(ξ) +

GT1(ξ)

2
√
2ν

)
A−2(ξ). (3.71)

The TOD parameter γ(ξ) is used to control the effective propagation distance Z(ξ), the GVD
parameter φ(ξ), the coefficient of linear birefringence D(ξ), the SS coefficient α3(ξ) and the
SPM nonlinearity C(ξ). The gain and loss term of the induce optical activity µ(ξ) can be
used to manage the optical activity on the amplitude A(ξ), on the SS coefficient α3(ξ) and
on the SPM nonlinearity C(ξ). To determine the complex field V [Z(ξ), T (ξ, τ)], the modified
Darboux transformation method [24, 63, 94, 335] is used. The first-and second-order rational
solutions of the Hirota equation, namely by Eq. (3.53), was recently found by Ankiewicz et al.
[116]. They showed how to construct the hierarchy of rational solutions of the Hirota equation.
According to the modified Darboux transformation, the first-and second-order rational solutions
are constructed in the following paragraph.

Considering the correspondence Z(ξ) = x, 1√
2
T (ξ, τ) = t and ν = α3 in the Ref. [116], the

first-order of the complex field V [Z(ξ), T (ξ, τ)] leads to

V1 [Z(ξ), T (ξ, τ)] =

[
1− G1 + iH1

D1

]
exp {iZ(ξ)} , (3.72)

where

G1 = 4, H1 = 8Z(ξ), D1 = 1 +
[√

2T (ξ, τ) + 12νZ(ξ)
]2

+ 4Z(ξ)2. (3.73)

Taking into account the above correspondence, solution (3.72) is known as the Peregrine soli-
ton [39]. Then, collecting the partial solutions together, one constructs the first-order rational
solution related to the exact chiral optical rogue wave solution of Eq. (3.49)

ψ1 = A(ξ)
[
1− G1+iH1

D1

]
exp {iZ(ξ) + iρ (ξ, τ)} . (3.74)

The intensity of the first-order chiral optical rogue wave is

|ψ1|2 = A0
2 exp

−2

ξ∫
0

µ(s)ds



([√

2T + 12νZ
]2

+ 4Z2 − 3
)2

+ 64Z2(
1 +

[√
2T + 12νZ

]2
+ 4Z2

)2
 . (3.75)

This first-order rational solution is used to describe the propagation of rogue wave in chiral
optical fibers. We use it to show the influence of optical activity on the propagation of rogue
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waves and with a suitable choice of parameters of the original Eq. (3.49), we manage the
controllability of chiral optical rogue wave.

Then the second-order rational solution of the complex field V [Z(ξ), T (ξ, τ)] presented by
Ankiewicz et al. [116] stands for

V2 [Z(ξ), T (ξ, τ)] =

[
1 +

G2 + iZ(ξ)H2

D2

]
exp i {Z(ξ)} , (3.76)

where G2, H2 and D2 are given by the relations

G2 = −48T 4 − 1152
√
2νZT 3 − 144T 2[4Z2 (36ν2 + 1) + 1]− 576

√
2νZT [12Z2 (12ν2 + 1) + 7]

−192Z4 [216 (6ν4 + ν2) + 5]− 864Z2 (44ν2 + 1)− 36,

H2 = −96T 4 − 2304
√
2νZT 3 − 96T 2[4Z2 (108ν2 + 1)− 3]− 1152

√
2νZT [4Z2 (36ν2 + 1)]

−384Z4(36ν2 + 1)
2 − 192Z2 (180ν2 + 1) + 360,

D2 = 8T 6 + 288
√
2νZT 5 − 432Z4 (624ν4 − 40ν2 − 1) + 36Z2 (556ν2 + 11) + 9 + 64Z6(36ν2 + 1)

3

+96
√
2ZT 3 [12Z2 (60ν2 + 1)− 1] + 12T 4[4Z2 (180ν2 + 1) + 1] + 6T 2[16Z4 [216ν2 (30ν2 + 1)− 1]

−24Z2 (60ν2 + 1) + 9] + 72
√
2νZT [16Z4 (36ν2 + 1) + 8Z2 (1− 108ν2) + 17].

(3.77)
According to the same correspondence of variables as for first-order, we obtain the second-order
solution found by Akhmediev et al. [301]. Collecting the partial solutions together, we construct
the final second-order rational solution related to the exact solution of Eq. (3.49)

ψ2 = A(ξ)
[
1 + G2+iZ(ξ)H2

D2

]
exp {iZ(ξ) + iρ (ξ, τ)} . (3.78)

The intensity of the second-order chiral optical rogue wave solution is

|ψ2|2 = A0
2 exp

−2

ξ∫
0

µ(s)ds


[
(G2 +D2)

2 + Z(ξ)2H2
2

D2
2

]
. (3.79)

This second-order rational solution is more precise than the first one. It describes the optical
activity effect on two rogue waves propagating in a chiral optical fiber as well as collisions
between them. This solution is used in the next section to investigate the features of chirality
on rogue wave collisions.

Now, let turn the attention to the case of chiral NLS equation with constant coefficients.
Thus, the new variables of the first-and second-order rational solutions become

T (ξ, τ) = T1(ξ)τ + T0(ξ), ρ (ξ, τ) = ρ1(ξ)τ + ρ0(ξ), Z(ξ) = −
√
2γ
4ν

ξ∫
0

T1(s)
3ds,

A(ξ) = A0 exp {−µξ} ,
(3.80)

where, T1ξ(ξ) = 0, ρ1ξ(ξ) = 0 and µ = b3 (1±KTc). By taking into account the new variables
above, the first-and second-order rational solutions of the chiral NLS equation with constant
coefficients are given by Eq. (3.74) and Eq. (3.78), respectively. With these exact solutions,
one can appreciate the influence of optical activity on rogue wave in chiral NLS equation with
constant coefficients.
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After the construction of the above exact solutions, their parameters are chosen to investigate
the dynamics behavior and the features of chiral optical rogue waves. So doing, let alternate
the sign of values in both space and time, which is required to optimize the eventual stability
of the solutions.

3.3.4 Optical activity effects on rogue wave propagation

To illustrate the effect of optical activity on the propagation of rogue waves related to the
first-and second-order rational solutions, free functions T1(ξ), T0(ξ), µ(ξ) and γ (ξ) are cho-
sen appropriately to generate abundant structures of chiral optical rogue waves. One presents
managed cases, in which the choice of chiral parameter leads to the control of chiral optical
rogue waves. It is noted that parameters are chosen in order to be bounded in the intervals
−15 < ξ < 15 and −15 < τ < 15. In this work, curves are plotted with the help of Matlab.
Through Jacobian elliptic functions, the intensities of the first-and second-order rational solu-
tions are used to show the influence of optical activity on the structure of chiral optical rogue
waves. Their approximative formulas are given in reference by [336]

dn(z, k) ≈ 1− k2 sin (z)2

2
,

cn(z, k) ≈ cos(z)− k2 sin(z)
(
z−sin(z) cos(z)

4

)
,

sn(z, k) ≈ sin(z)− k2 cos(z)
(
z−sin(z) cos(z)

4

)
.

(3.81)

(a) (b)

Figure 35: First-order chiral optical rogue waves on the left-and right-hand side with variable coefficients, where the
parameters are (a) Tc = 0.5; (b) Tc = 0.1; with b1 = 0.2, K = 1, b3 = 0.1, ν = 0.6, k3 = 0.6, k4 = 0.9, T1(ξ) =

√
2b1,

T0(ξ) = cn (ξ, k4), γ (ξ) = k3
2sn (ξ, k3) cn (ξ, k3) in each case and µ(ξ) = b3 (1−KTc) sn (ξ, k4) dn (ξ, k4) for the left-hand

intensity |ψ−|2 and µ(ξ) = b3 (1 +KTc) sn (ξ, k4) dn (ξ, k4) for the right-hand intensity |ψ+|2.

To generate more stable chiral optical rogue wave, one uses the Jacobian elliptic functions
which are responsible for the snaker form of waves as seen in Figs. 35, Figs. 36 and Figs. 37,
where |ψ−|2 and |ψ+|2 are chiral optical rogue waves in the left-and right-hand side, respectively.
It is observed through these figures that when the chiral parameter Tc is weak, the waves in both
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(a) (b)

Figure 36: Second-order chiral optical rogue waves on the left-and right-hand side with variable coefficients, where the
parameters are (a) Tc = 0.5; (b) Tc = 0.1; with b1 = 0.2, K = 1, b3 = 0.1, ν = 0.6, k3 = 0.6, k4 = 0.9, T1(ξ) =

√
2b1,

T0(ξ) = cn (ξ, k4), γ (ξ) = k3
2sn (ξ, k3) cn (ξ, k3) in each case and µ(ξ) = b3 (1−KTc) sn (ξ, k4) dn (ξ, k4) for the left-hand

intensity |ψ−|2 and µ(ξ) = b3 (1 +KTc) sn (ξ, k4) dn (ξ, k4) for the right-hand side intensity |ψ+|2.

(a) (b)

Figure 37: First(a)-and second (b)-order chiral optical rogue waves on the right-and left-hand side with constant
coefficients, where parameters are (a) Tc = 0.5; (b) Tc = 0.1; with b1 = 0.2, K = 1, b3 = 0.01, ν = 0.6, γ = 0.03, k4 = 0.9,
T1(ξ) =

√
2b1, T0(ξ) = cn (ξ, k4) in each case and µ = b3 (1−KTc) for the left-hand intensity |ψ−|2 and µ = b3 (1 +KTc)

for the right-hand intensity |ψ+|2.
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hands have the same form [Figs. 35(b) , Figs. 36(b) and Figs. 37(b)] and the same amplitude
[Figs. 36(b) and Figs. 37(b)]. One notices that the increase of chiral parameter reveals a notable
difference on the form of waves between the left-and right-hand intensities [see Figs. 35(a),
Figs. 36(a) and Figs. 37(a)]. One denotes that the second-order solutions [Figs. 36 and Figs.
37(b)] with more curvatures than the first-order solutions [Figs. 35 and Figs. 37(a)] and this, in
addition to the coefficients with management, yield a more accurate study of the influence of
the optical activity on rogue waves. As conclusion the increase of the right-hand intensities and
the decrease of the left-hand intensities are slightly due to the order of the solution and highly
caused by the increase of the optical activity [see Figs. 36 and Figs. 37 ]. The exchange of energy
observe here is also due to the two-wave mixing (TWM) effect. The main difference between
parameters of Figs. 35-37 depends on the order of rational solutions through the parameters
Gi, Hi and Di (i=1, 2). The parameters G1, H1 and D1 given in Eq. (3.73) have been used to
construct the first-order rational solution (3.74) while G2, H2 and D2 given in Eq. (3.77) have
been used to construct the second-order rational solution (3.78) and where the parameters µ
and γ depend on the variable ξ in Figs. 35 and Figs. 36. In contrast to Figs. 37, where the
first-and second-order rational solutions are constructed with parameters µ and γ taken as
constants. To perform this study, the chiral CNLS equations is used in what follows.

3.4 Chiral optical vector rogue waves in coupled nonlinear Schrödinger
equation with coupled space-dependance coupling field

3.4.1 Model

From the model obtained in Eq. (3.46), the coupled system of NLS equation in chiral optical
fibers with coupled space-dependence coupling field is given by

iψ1ξ + φψ1ττ − iγψ1τττ + iµψ1 ∓Dψ1 −
(
C1|ψ1|2 + C|ψ2|2

)
ψ1 + iα3|ψ1|2ψ1τ − β(ξ)ψ2 = 0,

iψ2ξ + φψ2ττ − iγψ2τττ + iµψ2 ∓Dψ2 −
(
C|ψ1|2 + C2|ψ2|2

)
ψ2 + iα3|ψ2|2ψ2τ − β(ξ)ψ1 = 0,

(3.82)
where the last term β(ξ) describes the coupling between mixed polarizations. As we consider
an isotropic medium with circular polarization and linear birefringence, the presence of FWM
becomes implicit through the reference changing [see Appendix (A7)] whereas the SPM terms
(C1|ψ1|2ψ1;C2|ψ2|2ψ2) and XPM terms (C|ψ1|2ψ2;C|ψ2|2ψ1) can be identified in the above
model. In fact, C1 and C2 are SPM nonlinearities (interactions) and C is the XPM nonlinearity
(interactions). The FWM in this coupled system of equations should be responsible for the
exchange of energy between components.

The study is based on the theory of determinant of the nonlinear coefficients in the form
[24]

∆ = C1C2 − C2, (3.83)

which determines the thermodynamic instability of the system. To reduce the number of figures,
one chooses only one value of the chiral parameter Tc = 0.5 and the case where the SPM
interactions have the same signs of the scattering length, i.e. when C1C2 > 0 or the opposite
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signs.

3.4.2 Chiral optical rogue waves in the case: ∆ = 0

A. First case: ∆ = 0 and CC1,2 > 0

In this case, the XPM and SPM interactions are either focusing or defocusing. For mixed
polarizations of two different kinds, β(ξ) ≡ 0. To simplify the evaluation of this coupled system,
one deduces the compact form from the Manakov system as follows [354]

iuξ + φuττ − iγuτττ + iµu∓Du− Cu+uu+ iα3u
+uτ = 0. (3.84)

where u =

(
u1
u2

)
and C1 = C2 = C.

The SU(2) rotations are defined by two matrices as

R0 =

(
cosα sinα

− sinα cosα

)
, R1 =

(
eiB(ξ) −e−iB(ξ)

eiB(ξ) e−iB(ξ)

)
, (3.85)

where α is a constant and B(ξ), the real function write down in the form B(ξ) = −
∫
β(ξ)dξ.

Let define ψ = R1R0u and for the invariant norm i.e. u+u = ψ+ψ, the evolution equation yields

iψξ + φψττ − iγψτττ + iµψ ∓Dψ − Cψ+ψψ + iα3ψ
+ψτ − β(ξ)σ1ψ = 0, (3.86)

where σj(j = 1, 2, 3) are the standard Pauli matrices. To construct the rational solution of Eq.
(3.84), let choose it in the form of one component chiral optical rogue wave as

u = Ψ(ξ, τ)

(
1

0

)
, where

Ψ(ξ, τ) = A0√
−C

[
1− 4+i8Z(ξ)

1+[
√
2T (ξ,τ)+12νZ(ξ)]

2
+4Z(ξ)2

]
exp {−µξ} exp {iZ(ξ) + iρ (ξ, τ)} ,

(3.87)

which is valid for C < 0, and where the variables are

T (ξ, τ) = T1(ξ)τ + T0(ξ), ρ (ξ, τ) = ρ1(ξ)τ + ρ0(ξ), Z(ξ) = −
√
2γ
4ν

ξ∫
0

T1(s)
3ds, (3.88)

with µ = b3 (1±KTc), T0(ξ) = cn (ξ, k2), T1(ξ) = dn (ξ, k1), ρ0(ξ) = sn (ξ, k4) and ρ1(ξ) =

cn (ξ, k3) . The above solution helps us to obtain a parametric family of chiral optical rogue
wave solutions of Eq. (3.86) in the form

ψ =
1√
−2C

Ψ(ξ, τ)

(
cosαeiB(ξ) + sinαe−iB(ξ)

cosαeiB(ξ) − sinαe−iB(ξ)

)
. (3.89)

The varying parameters T1(ξ) and ρ1(ξ) in this section, excite complex structures which may
be useful to control the propagation of chiral optical vector rogue waves.
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B. Second case: ∆ = 0 and CC1,2 < 0

Here, the scattering lengths of the XPM and SPM interactions have the same signs and this
allows us to let β(ξ) ≡ 0. Therefore, Eqs. (3.82) are reduced to

iw1ξ + φw1ττ − iγw1τττ + iµw1 ∓Dw1 − C
(
|w1|2 − |w2|2

)
w1 + iα3|w1|2w1τ = 0,

iw2ξ + φw2ττ − iγw2τττ + iµw2 ∓Dw2 − C
(
|w2|2 − |w1|2

)
w2 + iα3|w2|2w2τ = 0,

(3.90)

where w =

(
w1

w2

)
. The compact form of Eqs. (3.90) is given by

iwξ + φwττ − iγwτττ + iµw ∓Dw − C (w+σ3w) σ3w + iα3 (w
+σ3w)σ3wτ = 0. (3.91)

For the defined unitary matrices

P0 =

(
coshα sinhα

− sinhα coshα

)
, P1 =

(
sinhα coshα

coshα sinhα

)
, (3.92)

let generate the wave function ψ = Pjw (j = 0, 1) which will solve the system

iψ1ξ + φψ1ττ − iγψ1τττ + iµψ1 ∓Dψ1 − (−1)jC
(
|ψ1|2 − |ψ2|2

)
ψ1 + iα3|ψ1|2ψ1τ = 0,

iψ2ξ + φψ2ττ − iγψ2τττ + iµψ2 ∓Dψ2 − (−1)jC
(
|ψ1|2 − |ψ2|2

)
ψ2 + iα3|ψ2|2ψ2τ = 0.

(3.93)

The use of a given value for the constant α in the unitary matrixes can reduce the coupled
systems (3.93) to (3.90) for |w1|2 = |w2|2. This imply that the system is purely linear and as
consequence, this case can not support chiral optical vector rogue waves of the type ψ1 ≈ ψ2.

3.4.3 Chiral optical vector rogue waves in the case: ∆ ̸= 0

A. Modulation instability and condition of unstable background

Let start the study on the case ∆ ̸= 0 with two polarized electromagnetic waves without
linear coupling. One considers β(ξ) ≡ 0 in the coupled systems (3.82). As the solution of
one component chiral optical rogue wave is known, one can deduce an analog form for two
components as follows [24]

ψ1 (ξ, τ) = a1Ψ(ξ, τ) ,

ψ2(ξ, τ) = a2Ψ(ξ, τ) exp(iδ),
(3.94)

where Ψ(ξ, τ) is given in relation (3.87), δ, the constant phase mismatch, a1 and a2 are the
amplitudes which yield

a1
2 =

C − C2

∆
, a2

2 =
C − C1

∆
. (3.95)

Here, we let
C = ±1, C1 = d1 ±KTc, C2 = d2 ±KTc, (3.96)

where C and C1,2 are XPM and SPM nonlinearities and d1,2 the arbitrary constants. Relation
(3.95) is the condition for the existence of the synchronized vector rogue waves. The solution
(3.94) obtained in two components, describes the propagation of vector rogue waves in chiral
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optical fibers. It is well-known that a rogue wave is generated by an unstable background and
in order to transform the background solution to become unstable, one sets

(
ψ1

(0), ψ2
(0)
)

=

(a1, a2). By so doing, the solution of Eqs. (3.82) is chosen in the form of weakly modulated
constant background [24, 44]

ψj (ξ, τ) = [aj + αj exp(iKξ − iωτ) + βj exp (−iKξ + iωτ)] exp[−i (Cjaj2 + Ca3−j
2) τ ],

(3.97)
where aj is a constant background, αj and βj, the amplitudes of the two components, K is the
wave number and ω the frequency. Here, we suppose that αj, βj << aj(j = 1, 2).

B. Existence of vector rogue waves

The substitution of solution (3.97) into the coupled systems (3.82) gives after the linearizing
with respect to αj and βj, the dispersion relation

γ2ω6 − γ (η1 + η2)ω
5 + [η1η2 − γ (β1 + β2)]ω

4 + [β1η2 + β2η1 − γ (α1 + α2)]ω
3

+(β1β2 + η1α2 + η2α1)ω
2 + (β1α2 + β2α1)ω + α1α2 − 4a1

2a2
2C2 = 0,

(3.98)

where the parameters are

ϕ12 = C1a1
2 + Ca2

2, ϕ22 = C2a2
2 + Ca1

2,

η1 = φ− 3γϕ12, η2 = φ− 3γϕ22,

β1 = ϕ12 + 3iγϕ12
2 − αa1

2, β2 = ϕ22 + 3iγϕ22
2 − αa2

2,

α1 = K + γϕ12
3 − iµ∓D − iφϕ12

2 + 2C1a1
2 − 3αϕ12a1

2 + ϕ12,

α2 = K + γϕ22
3 − iµ∓D − iφϕ22

2 + 2C2a2
2 − 3αϕ22a2

2 + ϕ22.

(3.99)

Between the roots of the polynomial given in Eq. (3.98), one should have at least one imaginary
root ω to obtain an unstable background and this can be possible under the conditions C1,2 < 0

or ∆ < 0. Thus, Eq. (3.98) is the condition of modulational instability of the background.

3.4.4 Stable and unstable branches of chiral optical rogue waves

For some specific set of parameters given in Figs. 38-42 captions, let determine the stable and
unstable branches of chiral optical rogue waves and indirectly, the existence of vector rogue
waves through the dispersion relation given by Eq. (3.98). All the possible cases for the same
and opposite signs of SPM and XPM nonlinearities are analyzed in table 2.
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Table 2: Occurrence of modulation instability and chiral vector rogue waves for mixed cases of SPM and XPM interac-
tions.

3.5 Chiral vector rogue waves with mixed polarization in chiral opti-
cal fiber

3.5.1 Chiral optical rogue waves on mixed polarization without linear coupling

A. Case of focusing XPM and SPM interactions (C, C1,2 < 0)

We first consider the case where the focusing XPM and SPM interactions are focusing, i.e. C,
C1,2 < 0. Under this consideration, the initial conditions given in the form of exact solution in
relation (3.94), induce the excitation of chiral optical vector rogue waves in the left-and right-
hand side [see Figs. 38(a) and 38(b)]. To show how sensitive is the evolution of chiral optical
rogue wave, let choose another initial conditions with slightly difference on the amplitude.
Therefore, one obtains chiral optical vector rogue waves in each hand, where one remarks a
weak amplitude in the first components and significant one, in the second components [see Figs.
38(c) and 38(d)]. In this regard, vector rogue waves most exist in Figs. 38(a) and 38(b) whereas
they do not exist in Figs. 38(c) and 38(d). This weak appearance of chiral optical rogue waves
in the first components can be understood if we suppose that |ψ1|2 << |ψ2|2. In consequence,
the function ψ1 on each hand can be considered as a linear wave-function localizes around
the minima of the trap potential U = −|ψ2|2, created by the second component ψ2, localized
around the maxima of the potential barrier. one can conclude that the second components
have a self-focusing character that protect them from destructive action of the optical lattice
(trapping potential) whereas the first components, exposed to the self-defocusing character of
the potential barriers are trapped in the lattice. Fortunately, it would remained one component
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in each side in the chiral optical fiber and the transport of information by two components can
always takes place.

(a) (b)

(c) (d)

Figure 38: Chiral optical vector rogue waves of the right-and left-hand intensity |ψ1,2(ξ, τ)|2 where the parameters
are for (a) and (c) C1 = −1.6, C2 = −1.8, ∆ > 0, µ = b3 (1−KTc); for (b) and (d) C1 = −0.6, C2 = −0.8, ∆ < 0,
µ = b3 (1 +KTc); with K = 1, Tc = 0.5, d1 = −1.1, d2 = −1.3, α3 = 0.2, γ = 0.02, D = 0.6, k1 = 0.4, k2 = k4 = 0.6,
k3 = 0.5, b3 = 0.01 and C = −1 in each case. At ξ = −9, the initial condition takes the form of exact solutions (3.87)
with δ = 0 for (a) and (b) then ψ1 =

(
a1

2 − 0.3
)1/2

Ψ(ξ, τ), ψ2 =
(
a1

2 + 0.3
)1/2

Ψ(ξ, τ) for (c) and (d).

3.5.2 Case of focusing (C < 0) and defocusing (C > 0) nature of the cross-phase
modulation with focusing self-phase modulation nonlinearity (C1,2 < 0)

Now, let consider the case depicted in Figs. 39 where a comparison is made between the focusing
(C < 0) and the defocusing (C > 0) nature of the XPM nonlinearity with the focusing SPM
nonlinearities C1,2 < 0. It is observed in the mixed case of the defocusing nature of the XPM
and focusing SPM nonlinearities that the amplitudes are much higher [see Figs. 39(c) and 39(d)]
than the ones observed in the unmixed case of defocusing XPM and SPM nonlinearities [see
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Figs. 39(a) and 39(b)]. An interesting phenomenon occurs on the right-hand [Figs. 39(d)] and
it can be seen that the components have the same amplitude and the second one is similar to
the usual rogue waves which are localized both in space and time. This special aspect of chiral
optical rogue waves, that is, to send two signals through a vector of rogue waves with the same
frequency, can help in optic communication domain.

(a) (b)

(c) (d)

Figure 39: Chiral optical vector rogue waves of the right-and left-hand intensity |ψ1,2(ξ, τ)|2 where the parameters
are for (a) and (c) C1 = −2.5, C2 = −3.0, ∆ > 0, µ = b3 (1−KTc); for (b) and (d) C1 = −1.5, C2 = −2.0, ∆ < 0,
µ = b3 (1 +KTc); with K = 1, Tc = 0.5, d1 = −2, d2 = −2.5, α3 = 0.2, γ = 0.02, D = 0.6, k1 = 0.4, k2 = k4 = 0.6,
k3 = 0.5 and b3 = 0.01 in each case; C = −1 for (a) and (b); C = 1 for (c) and (d). At ξ = −9, the initial condition takes
the form of exact solutions (3.87) with δ = 0.

3.5.3 Focusing (C1 < 0) and defocusing (C2 > 0) self-phase modulation interactions
with focusing cross-phase modulation (C < 0)

When one choose focusing (C1 < 0) and defocusing (C2 > 0) SPM interactions with focus-
ing XPM interactions, the inverse situation observed in Figs. 38(c) and 38(d) occurs in Figs.
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40 where the self-focusing character of the first component, ten time more higher than the
amplitude of the linear wave function ψ2, created a trap potential U = −|ψ1|2 that trap the
second component in the lattice. Because of the nonexistence of the left-hand chiral optical
rogue waves, this other aspect can help to guide waves in the right-hand side only.

Figure 40: Non existence of chiral optical vector rogue waves of the left-hand and existence of the right-hand intensity
|ψ1,2(ξ, τ)|2 where the parameters are C1 = −0.6, C2 = 1.5, ∆ < 0 and µ = b3 (1 +KTc) on the right-hand and
C1 = −1.6, C2 = 0.5, ∆ < 0 and µ = b3 (1−KTc) on the left-hand; with K = 1, Tc = 0.5, d1 = −1.1, d2 = 1, α3 = 0.2,
γ = 0.02, D = 0.6, k1 = 0.4, k2 = k4 = 0.6, k3 = 0.5, C = −1 and b3 = 0.01 in each case. At ξ = −9, the initial condition
takes the form of exact solutions (3.87) with δ = 0.

3.5.4 Equal self-phase modulation nonlinearities (C1 = C2) with defocusing cross-
phase modulation (C > 0)

Now, one decides to generate chiral optical rogue wave in the form of one component with equal
SPM interactions which are either defocusing C1,2 > 0 or focusing C1,2 < 0 with defocusing
XPM interactions C > 0.With slightly excitation in the second component as depicted in Figs.
41, one remarks that the amplitudes of the second components are too weak in such a way that
one can say, they do no exist and consequently that, there is not chiral optical vector rogue
waves in both left-and right-hand side.Finally, we can confirm that the defocusing nature of
the XPM is responsible for the generation of holes or chiral optical dark rogue waves in the
second components and to the unperturbed rogue waves or bright chiral optical rogue waves
in the first components. In summary, one can construct a bright-dark vector of rogue waves in
chiral optical fiber.
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(a) (b)

Figure 41: Chiral optical vector rogue waves of the right-and left-hand intensity |ψ1,2(ξ, τ)|2 where the parameters are
C1 = C2 = 1.96, and µ = b3 (1−KTc) on the left-hand and C1 = C2 = −0.96 and µ = b3 (1 +KTc) on the right-hand;
with K = 1, Tc = 0.5, d1 = d2 = −1.46 α3 = 0.2, γ = 0.02, D = 0.6, k1 = 0.4, k2 = k4 = 0.6, k3 = 0.5, b3 = 0.01 and
C = 1; then ψ1 = (−C1)

−1/2Ψ(ξ, τ) and ψ2 = 0.02Ψ (ξ, τ) in each case at the origin space ξ = −9.

3.5.5 Case of defocusing interactions of self-phase modulation nonlinearities (C1,2 >

0) with focusing interaction of cross-phase modulation nonlinearity (C < 0)

Let consider now the case of defocusing interactions of the SPM nonlinearities (C1,2 > 0) with
focusing interactions of XPM nonlinearity (C < 0) depicted in Figs. 42, where is observed
the nonexistence of right-hand chiral optical rogue waves and the propagation of waves in the
left-hand side only. Through Figs. 40, it can be seen that vector rogue waves can be guided
only in the right-hand and through Figs. 42 that they can be guided only in the left-hand. In
summary, one can control the propagation direction of vector rogue waves in chiral optical fiber.
The presence of several peaks in some profiles in the text is caused by the strong instability
of the background and also due to interactions and collisions between components. They are
unusual rogue waves also known as ABs or KM solitons which are not localized in both space
and time like usual rogue waves.

3.5.6 Chiral optical rogue waves on mixed polarization with linear coupling

Let take into account the last term of Eq. (3.82), β (ξ) which is responsible for the exchange
between the two wave components. One sets N1 and N2 as the power in the first and second
components, relative to the total power in the system, respectively in the following form

N1 =
∫
|ψ1(τ)|2dτ∫
|Ψ(τ)|2dτ = −1

2C
[1 + sin(2α) cos(2B(ξ))] ,

N2 =
∫
|ψ2(τ)|2dτ∫
|Ψ(τ)|2dτ = −1

2C
[1− sin(2α) cos(2B(ξ))] ,

(3.100)
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Figure 42: Existence of chiral vector rogue waves of the left-hand and non existence of the right-hand intensity
|ψ1,2(ξ, τ)|2 where the parameters are C1 = 0.6, C2 = 0.8, ∆ < 0 and µ = b3 (1−KTc) on the left-hand and C1 = 1.6,
C2 = 1.8, ∆ > 0 and µ = b3 (1 +KTc) on the right-hand; with K = 1, Tc = 0.5, d1 = 1.1, d2 = 1.3, α3 = 0.03, γ = 0.02,
D = 0.6, k1 = 0.4, k2 = k4 = 0.6, k3 = 0.5, b3 = 0.01 and C=-1 in each case. At ξ = −9, the initial condition takes the
form of exact solutions (3.87) with δ = 0.

where ψ1,2 are deduced from Eq. (3.89), C = −1, α = π
4
+ nπ

2
with n being an integer. Now, let

choose B(ξ) in the form

B(ξ) =
π

4

[
1− b

ξ − ξ0
ξ0

]
, (3.101)

and make a choice where the linear dependance of the phase B(ξ) depends on ξ. Through
analytical simulation, one obtains chiral optical vector rogue waves in the left-and right-hand
depicted in Figs. 43. For b = 1, the first components in both side have the behavior of rogons
which after their disappearance, reappear without major shape change in the amplitude [See
Figs. 43(a) and 43(b)]. One remarks that, all particles are concentrated in the second compo-
nents in the vicinity of ξ = 0. Thus, the fast oscillations of the background [see Figs. 43(c)
and 43(d)] for b = 15 is exhibited. One denotes in an equal way, the increase of the amplitude
in the left-hand and the decrease of the amplitude on the right-hand and in consequence, this
process reveals the presence of FWM which is responsible for the exchange of energy between
components in the system. Let show throughout Figs. 38(c) and 38(d) and then through Figs.
40 and Figs. 41(a) and 41(b), how strong XPM interaction can causes the nonexistence of syn-
chronized chiral vector rogue waves. Nevertheless, it is observed in these cases that, such waves
can exist but with weak amplitude in one component. Then, with the matrices P0,1 defined in
Eq. (3.92), one arrives to the equal relation |ψ1|2 = |ψ2|2 from system (3.93) which describes
pure linear dispersive dynamics.
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(a) (b)

(c) (d)

Figure 43: Chiral vector rogue waves of the right-and left-hand intensity |ψ1,2(ξ, τ)|2 of Eq. (3.89), where the parameters
are given in Eq. (3.87), Eq. (3.88) and Eq. (3.101) with µ = b3 (1−KTc) on the left-hand and µ = b3 (1 +KTc) on the
right-hand; b = 1.0 in (a) and (b) and then b = 15 in (c) and (d); with K = 1, Tc = 0.7, C = −1, α = π/4, b3 = 0.01,
γ = 0.03, k1 = 0.4, k2 = 0.6, ν = 0.6, ξ0 = −10, T0(ξ) = cn (ξ, k2) and T1(ξ) = dn (ξ, k1) in each case.
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3.6 Combined effects of nonparaxiality, optical activity and walk-off
on rogue wave propagation in optical fibers filled with chiral ma-
terials

After the investigation of fundamental problems of electromagnetic wave interaction with chiral
materials, the area of wave propagation in chiral media has renewed attention both from the-
oretical and experimental points of view [355]. The electromagnetic wave propagation through
such medium displays two unequal characteristic wave numbers for the right-and left-circularly
polarized eigenmodes, which results in both optical activity and circular dichrosim, as conse-
quences of the circular birefringence [355, 89]. Significant advances have taken place on some
aspects relating to the applications of chiral media. One can mention the wave-guiding struc-
tures filled with chiral materials,which show many interesting features through the integrated
optic applications like directional couplers, which can be used as optical switches for energy
transfer from one fiber to another adjacent one. In fact, chiral medium has many potentials and
the development of integrated circuitry with chiral substrates and the multiplexing in chiral
fibers are important progress with potential applications in optics [346, 356]. The concept of
rogue waves which refers to rogons has been applied to pulses emerging from optical fibers,
and both numerical simulations and experiments show that the probability of their generations
increases with the increase of the initial noise level responsible for the modulation instability
(MI) [51]. It is worth noting that the MI that leads to their generation evolves two distinct
directions with opposite sense. On the one hand, it deals with the undesirable effects like the
non-return-to-zero code in optical communication, the drastic enhancement of MI gain in the
WDM (wavelength-division multiplexing) systems which sets the limitation of the bandwidth
window of the communication system, MI lasers, and the new frequency generations of ultra-
short pulses in optical systems. On the other hand, a suitable manipulation of MI has also found
important applications in optical amplification of weak signal, dispersion management, optical
switching, and the production of ultrashort pulses.Despite multiple observations in many other
fields, the origin and the predictability of rogons remains uncertain [113], as does the kind of MI
that leads to rogue wave generation [45, 46]. Important progress has been made very recently
by Baronio et al. [55], who showed that the MI is a necessary but not a sufficient condition for
the existence of rogue waves. scientists [55, 39] recognized that describing complex systems with
the standard NLS equation is oversimplifying the nonlinear phenomena that can occur in those
systems. Moreover, it was pointed out that the vector NLS equations describe rogue waves with
higher accuracy than the scalar models [74, 75, 76]. Under this assumption, the existence of
vector rogue waves in the defocusing regime was a crucial progress in the explanation of rogue
waves in multicomponent systems [55]. Among different models that have been studied before,
no report to the best of our knowledge is adequate to perform the description of the generation
and the propagation of nonparaxial rogue waves in optical fibers filled with chiral materials. As
the study is done under the assumption of high intensity and beam narrowness, one investigates
both scalar and vector models, which can be used efficiently to describe simultaneous effects
of nonparaxiality, optical activity, and walk-off on rogue waves propagating in optical fibers,
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filled with chiral materials. As physical phenomena require modeling waves with two or more
components to account for different modes, frequencies, or polarizations [74, 89, 90], it is also
necessary to use the vector NLS equations, which allow energy transfer between components
and which potentially yields rich and significant new families of vector rogue wave solutions.

3.6.1 Derivation of the homogeneous higher-order nonparaxial nonlinear Schrödinger
equation in chiral optical fibers

To describe the optical rogue wave propagation in chiral media, one deduces from Eq. (C25)
derived in the Appendix, the nonparaxial chiral NLS equation with modulated coefficients, in
the form

d(ξ)∂
2ψ
∂ξ2

+ j ∂ψ
∂ξ

+ P (ξ, τ)∂
2ψ
∂τ2

− jγ(ξ)∂
3ψ
∂τ3

+ jµ(ξ, τ)ψ ∓D(ξ, τ)ψ − C(ξ, τ)|ψ|2ψ
+jα3(ξ)|ψ|2 ∂ψ∂τ + η(ξ)∂ψ

∂τ
± jσ3(ξ, τ)

∂ψ
∂τ

= 0,
(3.102)

where ξ is the propagation distance and τ , the retarded time. The subscripts ξ and τ stand
for partial differentiation. The variable coefficients P (ξ, τ), µ(ξ, τ), D(ξ, τ), C(ξ, τ) and σ3(ξ, τ)
are related to the space/time-modulated group-velocity dispersion (GVD), gain or loss term of
the induced optical activity, linear birefringence, self-phase modulation (SPM) and linear group
velocity or walk-off. Parameters d(ξ), γ(ξ), α3(ξ) and η(ξ) are related to the space-modulated
nonparaxial parameter, TOD (third-order dispersion), SS (self-steepening) and the differential
gain or loss term, respectively. Through Eq. (3.102), we can see the importance and the necessity
to take into account those parameters which are responsible of nonparaxial, optical activity and
walk-off effects. These additional terms will help to improve the description and the control of
rogue wave propagation under the above assumptions. As the assumption of controllability [71]
is verified by the above model, let find the rational solutions with variable coefficients which
may be useful to control the propagation of the nonparaxial chiral optical rogue waves.

3.6.2 Similarity reduction of nonparaxial chiral nonlinear Schrödinger equation

Modulated coefficients in Eq. (3.102) can strongly affect the wave propagation in chiral optical
fiber because of the non integrability of the model. To solve this problem, let use the symmetry
reduction method [275, 276] to obtain the integrability conditions and reduce the generalized
nonparaxial chiral NLS equation to the higher-order integrable Hirota equation. So doing, the
envelope field is used in the form [64, 71, 353]

ψ (ξ, τ) = A(ξ)V [Z(ξ), T (ξ, τ)] exp {iρ (ξ, τ)} , (3.103)

to construct the rational solutions related to nonparaxial chiral optical rogue waves, where
A(ξ) is the amplitude, Z(ξ) the effective propagation distance, T (ξ, τ) the similitude variable,
V [Z(ξ), T (ξ, τ)] the complex field. The variable ρ (ξ, τ) is the phase of the wave. This form of
envelope field is also known as the similarity transformation or the reduction method.

Substituting Eq. (3.103) into Eq. (3.102) gives a coupled system of partial differential equa-
tions with variable coefficients
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d(ξ)(AξξV + 2AξZξVZ + 2AξTξVT + 2AZξTξVZT + AZξξVZ + ATξξVT + AZξ
2VZZ + ATξ

2VTT
−Aρξ2V )− AV ρξ + P (ξ, τ)(AVTTTτ

2 + AVTTττ − AV ρτ
2) + γ(ξ)(3AVTTττρτ + 3AVTTτρττ

+3AVTTTτ
2ρτ + AV ρτττ − AV ρτ

3)∓D(ξ, τ)AV − C(ξ, τ)A2|V |2AV − α3(ξ)A
2|V |2AV ρτ

+η(ξ)ATτVT ∓ σ(ξ, τ)AV ρτ = 0,
(3.104)

d(ξ)(AV ρξξ + 2AξρξV + 2AZξρξVZ + 2AρξTξVT ) + AξV + AVZZξ + AVTTξ + P (ξ, τ)(AV ρττ
+2AVTTτρτ )− γ(ξ)(AVTTτττ + 3AVTTTτTττ + AVTTTTτ

3 − 3AVTTτρτ
2 − 3AV ρττρτ )

+µ(ξ, τ)AV + α3(ξ)A
2|V |2AVTTτ + η(ξ)AV ρτ ± σ(ξ, τ)ATτVT = 0,

(3.105)
where the scripts of differential equations are simplified as A (ξ) = A, Z (ξ) = Z, T (ξ, τ) =

T , ρ (ξ, τ) = ρ and V [Z(ξ), T (ξ, τ)] = V . According to previous works [64, 71], let use the
symmetry reduction given by Eq. (3.103) that would reduce Eq. (3.102) to the higher-order
integrable Hirota equation in the form [116]

i
∂V

∂Z
= −∂

2V

∂T 2
+G|V |2V + 2

√
2iν

(
∂3V

∂T 3
+ 3|V |2∂V

∂T

)
. (3.106)

In the case of rogue waves finding, we take G = −1 to obtain rational solutions. The parameter ν
is a real constant. With V [Z(ξ), T (ξ, τ)] satisfying the relation (3.106), the similarity reduction
of Eqs. (3.104) and (3.105) yields

γ(ξ)TτTττ = 0, (3.107)

Tξ + 2d(ξ)Tτρτ + 2P (ξ, τ)Tτρτ ± σ(ξ, τ)Tτ − γ(ξ) (Tτττ − 3Tτρτ
2) = 0, (3.108)

Aξ + A(d(ξ)ρξξ + ρττP (ξ, τ) + 3γ(ξ)ρττρτ + µ(ξ, τ) + η(ξ)ρτ ) = 0, (3.109)

γ(ξ)Tτ
3 + 2

√
2νZξ = 0, (3.110)

AξV + AZξVZ + ATξVT = 0, (3.111)

α3(ξ)A
2Tτ − 6

√
2νZξ = 0, (3.112)

d(ξ)Tξξ + P (ξ, τ)Tττ + 3γ(ξ) (Tττρτ + Tτρττ ) + η(ξ)Tτ = 0, (3.113)

Zξ + d(ξ)Tξ
2 + P (ξ, τ)Tτ

2 + 3γ(ξ)ρτTτ
2 = 0, (3.114)

ρξ + d(ξ)ρξ
2 + P (ξ, τ)ρτ

2 + γ(ξ) (ρτ
3 − ρτττ )± σ(ξ, τ)ρτ ±D(ξ, τ) = 0, (3.115)

GZξ + A2 (C(ξ, τ) + α3(ξ)ρτ ) = 0, (3.116)

AξξV + 2AξZξVZ + 2AξTξVT + 2AZξTξVZT + AZξξVZ + AZξ
2VZZ = 0. (3.117)

Here, the subscripts ξ and τ , denote spatial and temporal derivatives, respectively. Through
the above symmetry reduction method, the constraints or integrability conditions of the model
given in Eq. (3.102) are derived from the differential equations of which the simplified forms
stand from Eq. (3.107) to Eq. (3.117), respectively as follows −3AVTT ̸= 0, AVT ̸= 0, V ̸= 0,
−AVTTT ̸= 0, 2dρξ ̸= 0, A|V |2VT ̸= 0, AVT ̸= 0, AVTT ̸= 0, −AV ̸= 0, −A|V |2V ̸= 0 and d ̸= 0.

Let keep in mind that each constraint plays an important role in the choice of arbitrary
functions and parameters of the system.
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3.6.3 First-and second-order nonparaxial chiral optical rogue waves with modu-
lated coefficients

To have an aperture of dynamics behavior of parameters, the above equations should be solved
to give the information on the form and order of each coefficient of the model and on variables
related to the complex field. The resolution of Eq. (3.107) yields for γ(ξ) ̸= 0 and for TτTττ = 0

to the similarity variable
T (ξ, τ) = T1(ξ)τ + T0(ξ), (3.118)

where T1(ξ) and T0(ξ) are arbitrary functions. From Eq. (3.110), the effective propagation
distance Z(ξ) will be

Z(ξ) = −
√
2

4ν

ξ∫
0

γ(s)T1(s)
3ds. (3.119)

Equation (3.112) gives the result

α3(ξ) = −3γ(ξ)T1
2(ξ)A−2(ξ). (3.120)

α3(ξ) has the physical sense of SS. The substitution of Eq. (3.118) into Eq. (3.113) tends to
d(ξ)Tξξ + 3γ(ξ)Tτρττ + η(ξ)Tτ = 0. As γ(ξ) ̸= 0 , T1(ξ) ̸= 0 and Tξξ = T1

ξξ
τ + T0ξξ

, the phase
of the envelope field can be written as

ρ(ξ, τ) = ρ3(ξ)τ
3 + ρ2(ξ)τ

2 + ρ1(ξ)τ + ρ0(ξ), (3.121)

with
ρ3 (ξ) = − 1

18

d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

, ρ2 (ξ) = −1
6

d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
, (3.122)

where ρ1(ξ) and ρ0(ξ) are arbitrary functions. Through relation (3.116), one finds that

C (ξ, τ) = C2 (ξ) τ
2 + C1 (ξ) τ + C0 (ξ) , (3.123)

with
C2 (ξ) = −1

2

T1(ξ)d(ξ)T1(ξ)ξξ

A(ξ)2
, C1 (ξ) = −T1(ξ)(d(ξ)T0(ξ)ξξ+T1(ξ)

2η(ξ))
A(ξ)2

,

C0 (ξ) =
γ(ξ)T1(ξ)

2

A(ξ)2

(
3 ρ1 (ξ) +

1
4

√
2GT1(ξ)
ν

)
.

(3.124)

C(ξ, τ) is the space/time-modulated SPM. Equation (3.114) stands for

P (ξ, τ) = P2 (ξ) τ
2 + P1 (ξ) τ + P0 (ξ) , (3.125)

with

P2 (ξ) =
1
2

d(ξ)T1(ξ)ξξ
T1(ξ)

− d(ξ)T1(ξ)ξ
2

T1(ξ)
2 , P1 (ξ) = η (ξ) +

d(ξ)T0(ξ)ξξ
T1(ξ)

− 2
d(ξ)T1(ξ)ξT0(ξ)ξ

T1(ξ)
2 ,

P0 (ξ) =
1
4
γ(ξ)T1(ξ)

√
2

ν
− 3 γ (ξ) ρ1 (ξ)−

d(ξ)T0(ξ)ξ
2

T1(ξ)
2 .

(3.126)

P (ξ, τ) is the space/time modulated GVD. Through Eq. (3.108), one arrives at

±σ(ξ, τ) = σ4(ξ)τ
4 + σ3(ξ)τ

3 + σ2(ξ)τ
2 + σ1(ξ)τ + σ0(ξ), (3.127)
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where the parameters σ4(ξ), σ3(ξ), σ2(ξ), σ1(ξ) and σ0(ξ) are expressed in the Appendix (D).
±σ(ξ, τ) is the left-and right-hand of the walk-off effect. Equation instead of relation (3.109) is
transformed to

A(ξ) = A0 exp


ξ∫

0

f(s)ds

 , (3.128)

where, A0 is a constant and with

f = µ3(ξ)τ
3 + µ2(ξ)τ

2 + µ1(ξ)τ + µ0(ξ)− µ(ξ, τ),

µ(ξ, τ) = µ3(ξ)τ
3 + µ2(ξ)τ

2 + µ1(ξ)τ + 2µ0(ξ),
(3.129)

where the parameters of the gain or loss term µ(ξ, τ) are given in the Appendix (E). µ(ξ, τ)
is the space/time modulated gain or loss term. It follows from the above equations that the
amplitude of the envelope field becomes

A(ξ) = A0 exp


ξ∫

0

−µ0(s)ds

 , (3.130)

with

µ0 (ξ) = −1
3

d(ξ)T0(ξ)ξ
2η(ξ)

γ(ξ)T1(ξ)
2 − 1

3

d(ξ)2T0(ξ)ξ
2T0(ξ)ξξ

γ(ξ)T1(ξ)
3 + 1

12
T1(ξ)

√
2η(ξ)

ν
− η (ξ) ρ1 (ξ)

+ 1
12

√
2d(ξ)T0(ξ)ξξ

ν
− d (ξ) ρ0 (ξ)ξξ .

(3.131)

The result coming from Eq. (3.115), is out to be

±D(ξ, τ) = D6(ξ)τ
6 +D5(ξ)τ

5 +D4(ξ)τ
4 +D3(ξ)τ

3 +D2(ξ)τ
2 +D1(ξ)τ +D0(ξ), (3.132)

with D− (ξ) = −D+ (ξ) and where D6(ξ), D5(ξ), D4(ξ), D3(ξ), D2(ξ), D1(ξ) and D0(ξ) are
given in the Appendix (F). ±D(ξ, τ) is the left-and right-hand of the space/time modulated
linear birefringence.

The resolution of the above differential equations reveals and confirms the assumption of
the space/time modulated variable of the TOD, gain or loss term, linear birefringence, SPM
and walk-off coefficients. More specifically, it reveals the optically active nature of the system
through the left-and right-hand of mathematical expressions of the linear birefringence and
walk-off term. In fact, the chirality, known as optical activity in optics, is the ability to rotate
plane polarized light and this happens when the plane polarized light hits an optically active
compound. The more compounds it hits, the more it rotates. Physically, when the polarized
light leaves the chiral optical fiber which is optically active, one should rotate the analyzer to
allow the plane of light to pass through. This angle of rotation, called observed rotation, can
be directed to the right-hand side, that is a positive rotation or clockwise rotation, also called
dextrorotatory. In the case of which the analyzer has to be rotated to the left-hand side for
the polarized light to pass through, that is a negative rotation or counter-clockwise rotation,
called levorotatory. Hence, the mathematical expressions of relations (3.127) and (3.132) with
positive signs refer to the dextrorotatory components and the ones with negative signs to the
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levorotatory components of the system. As we can see, they are equal in magnitude but opposite
in sign.

One can observe through the above variable coefficients of the model that, P (ξ, τ), µ(ξ, τ),
D(ξ, τ), C(ξ, τ) and σ3(ξ, τ) are polynomials in τ with coefficients being functions of ξ. Param-
eters d(ξ), γ(ξ), α3(ξ) and η(ξ) are arbitrary functions except the SS which depends on the
TOD and amplitude. Since the nonparaxial parameter d(ξ), the differential gain or loss term
η(ξ) and third-order dispersion γ(ξ), are major functions of the base equation coefficients, it
appears from analytical results that there are the main keys to control the amplitude, the SS,
the GVD, the SPM, the walk-off term and linear birefringence in optical fibers. Therefore, they
can be considered as specific control parameters of the system. The TOD coefficient, γ(ξ) can
also be used to control the effective propagation distance Z(ξ). The gain or loss term of the
induce optical activity µ(ξ, τ) can be used to manage the optical activity on the amplitude
A(ξ), SS coefficient α3(ξ) and on the SPM nonlinearity C(ξ, τ).

According to the MDT method [24, 94, 159, 335], which is well-known and clearly de-
rived by many authors, the first-and second-order of the complex field V [Z(ξ), T (ξ, τ)] are
expressed by Akhmediev et al. [116]. It’s good to mention that the first-order of the complex
field V [Z(ξ), T (ξ, τ)] was found by Peregrine [39] and the second-order by Akhmediev et al.
[?]. later, Ankiewicz et al. [116] found the first-and second-order of the Hirota equation. By
considering the correspondence Z(ξ) = x, 1√

2
T (ξ, τ) = t and ν = α3, in this last reference, the

first-order complex field V [Z(ξ), T (ξ, τ)] yields

V1 [Z(ξ), T (ξ, τ)] =

[
1− G1 + iH1

D1

]
exp {iZ(ξ)} , (3.133)

where

G1 = 4, H1 = 8Z(ξ), D1 = 1 +
[√

2T (ξ, τ) + 12νZ(ξ)
]2

+ 4Z(ξ)2. (3.134)

The partial solution (3.133), is known as the Peregrine soliton [39]. Then, collecting this solution
together with the founded amplitude and phase of the wave, one constructs the first-order
rational solution related to the nonparaxial chiral optical rogue wave given by

ψ1 = A(ξ)
[
1− G1+iH1

D1

]
exp {iZ(ξ) + iρ (ξ, τ)} , (3.135)

which result becomes

ψ1 = A0 exp

{
−

ξ∫
0

µ0(s)ds

}[
1− G1+iH1

D1

]
exp {iZ(ξ) + iρ (ξ, τ)} . (3.136)

This first-order rational solution is used to describe the propagation of nonparaxial optical
rogue wave in a fiber filled with chiral materials. For suitable choice of arbitrary parameters
of the original Eq. (3.102), one can manage through a simultaneous controllability, the rogue
wave structures with the specific control parameters. The second-order rational solution of the
complex field V [Z(ξ), T (ξ, τ)] stands for

V2 [Z(ξ), T (ξ, τ)] =

[
1 +

G2 + iZ(ξ)H2

D2

]
exp i {Z(ξ)} . (3.137)
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where G2, H2 and D2 are given by the relations

G2 = −48T 4 − 1152
√
2νZT 3 − 144T 2[4Z2 (36ν2 + 1) + 1]− 576

√
2νZT [12Z2 (12ν2 + 1) + 7]

−192Z4 [216 (6ν4 + ν2) + 5]− 864Z2 (44ν2 + 1)− 36,

H2 = −96T 4 − 2304
√
2νZT 3 − 96T 2[4Z2 (108ν2 + 1)− 3]− 1152

√
2νZT [4Z2 (36ν2 + 1)]

−384Z4(36ν2 + 1)
2 − 192Z2 (180ν2 + 1) + 360,

D2 = 8T 6 + 288
√
2νZT 5 − 432Z4 (624ν4 − 40ν2 − 1) + 36Z2 (556ν2 + 11) + 9 + 64Z6(36ν2 + 1)

3

+96
√
2ZT 3 [12Z2 (60ν2 + 1)− 1] + 12T 4[4Z2 (180ν2 + 1) + 1] + 6T 2[16Z4 [216ν2 (30ν2 + 1)− 1]

−24Z2 (60ν2 + 1) + 9] + 72
√
2νZT [16Z4 (36ν2 + 1) + 8Z2 (1− 108ν2) + 17].

(3.138)
According to the same correspondence joined with the founded variables including the above
solutions, the second-order rational solution, related to a particular solution of Eq. (3.102) was
obtained

ψ2 = A(ξ)
[
1 + G2+iZ(ξ)H2

D2

]
exp {iZ(ξ) + iρ (ξ, τ)} . (3.139)

Then, the construction of the second-order nonparaxial chiral optical rogue wave yields

ψ2 = A0 exp

{
−

ξ∫
0

µ0(s)ds

}
×
[
1 + G2+iZ(ξ)H2

D2

]
exp {iZ(ξ) + iρ (ξ, τ)} . (3.140)

These second-order rational solutions arise due to the collision between two or more ultrashort
pulses in the optical fiber. More specifically, they are nonparaxial chiral optical rogue waves
which can propagate through a fiber filled with chiral materials. The particularity of these so-
lutions is the simultaneous controllability of their amplitudes through the three specific control
parameters, which can be used to manage the intensity and the shape of the waves. As the
nonparaxiality, TOD and differential gain or loss terms depend on specific control parameterts,
they can therefore provide a more convenient and controlled environment to experimentally
study specific optical communication problems.

3.6.4 Dynamics behavior and features of combined effect on nonparaxial chiral
optical rogue waves

After the construction of the above solutions, the parameters are chosen to investigate the
dynamics behavior and the features of combined effects on nonparaxial chiral optical rogue
waves. After wards, let plot the specific control parameters of the system, the GVD and the
amplitudes of the envelope field in the left-and right-hand to have an aperture of their dynamic
in the nonparaxial chiral optical fiber [see Figs. 44, 45 and 46]. Then, let alternate the sign
of chiral parameters in both space and time in the first-and second-order of nonparaxial chiral
optical rogue wave solutions to analyze their behavior and therefore to optimize the eventual
stability of the solutions [see Figs. 47 and 48].

Figure 44 depicts the dynamical behavior of each specific parameter in the system. On the
one hand, one can observe the influence of chiral nature of the differential gain or loss term
through it weak peak in the left-hand side and high peak in the right-hand side. On the other
hand, the amplitude and the width of each parameter depend on the value of their moduli
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Figure 44: Specific control parameters: the left-and right-hand side of the gain or loss differential term η(ξ), nonparaxial
parameter d(ξ), and TOD γ(ξ), where η(ξ) = CT sn (ξ, k7), d(ξ) = dn (ξ, k5), γ (ξ) = cn (ξ, k6) and CT = 1 ±KTc with
k5 = 0.2, k6 = 0.4, k7 = 0.5 and KTc = 0.8.

Figure 45: The space/time-modulated Group Velocity Dispersion P (ξ, τ) on the left-and right-hand side, respectively,
expressed in relation (3.125) where, η(ξ) = CT sn (ξ, k7), d(ξ) = dn (ξ, k5), γ (ξ) = cn (ξ, k6), T0(ξ) = sn (ξ, k3), T1(ξ) =

dn (ξ, k3), ρ0(ξ) = dn (ξ, k2), ρ1(ξ) = cn (ξ, k1) with CT = 1±KTc and k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4, k5 = 0.2,
k6 = 0.4, k7 = 0.5, ν = 0.2 and KTc = 0.8.
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Figure 46: The left-and right-hand side amplitude A(ξ), presented in relation (3.130) where, η(ξ) = CT sn (ξ, k7),
d(ξ) = dn (ξ, k5), γ (ξ) = cn (ξ, k6), T0(ξ) = sn (ξ, k3), T1(ξ) = dn (ξ, k3), ρ0(ξ) = dn (ξ, k2), ρ1(ξ) = cn (ξ, k1) and
CT = 1±KTc with k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4, k7 = 0.5 and KTc = 0.8.

Figure 47: First-order nonparaxial chiral optical rogue waves on the left-and right-hand side of the rational solution
given by Eq. (3.136) where η(ξ) = CT sn (ξ, k7), d(ξ) = dn (ξ, k5), γ (ξ) = cn (ξ, k6), T0(ξ) = sn (ξ, k3), T1(ξ) = dn (ξ, k3),
ρ0(ξ) = dn (ξ, k2), ρ1(ξ) = cn (ξ, k1) and CT = 1 ±KTc with k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4,
k7 = 0.5, ν = 0.2 and KTc = 0.8.
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Figure 48: Second-order nonparaxial chiral optical rogue waves on the left-and right-hand side of the rational solution
given by Eq. (3.140) where η(ξ) = CT sn (ξ, k7), d(ξ) = dn (ξ, k5), γ (ξ) = cn (ξ, k6), T0(ξ) = sn (ξ, k3), T1(ξ) = dn (ξ, k3),
ρ0(ξ) = dn (ξ, k2), ρ1(ξ) = cn (ξ, k1) and CT = 1 ±KTc with k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4,
k7 = 0.5, ν = 0.2 and KTc = 0.8.

ki(i = 5, 6, 7) and on the type of Jacobian elliptic function they carry (cn, dn, sn). The left-and
right-hand of the space/time-modulated group-velocity dispersion P (ξ, τ), are illustrated in
Fig. 45 and expressed by relation (3.125) with their arbitrary Jacobian elliptic functions and
moduli given in the figure caption. It can be seen that the structure of GVD differs from one
hand to the other. Figure 46 depicts the profiles of the amplitudes of the envelope field A(ξ)

on both hands. One remarks on the trace of each evolution, the presence of two dark-bright
collisions in the right-hand and two bright-dark collisions in the left-hand. These collisions are
better observed through analytical simulation of the first-and second-order nonparaxial chiral
optical rogue waves which are illustrated in Figs. 47 and 48. Throughout these figures, we notice
a main difference on the structure and on the amplitude of the first-and second-order in both
hands. The energy transfer from the left-hand to right-hand on each solution is noticed.

More specifically in Fig. 46, it can be seen that the contrast of optical activity in the sense
of oscillation of each component of the amplitude as it increase then decrease on the left-
hand whereas it decrease then increase on the right-hand. Generally in optically active media,
components are equal in magnitude but different in sign. However, in this case, the equality of
magnitude is affected by the differential gain or loss term η(ξ) = (1±KTc)sn (ξ, k7) which is
responsible for the observed difference on it both hands and consequently, on the both hands
of the amplitude. It can be seen throughout Fig. 44 that the amplitude of the differential gain
or loss term is four time more higher in the right-hand compare to the left-hand. Now, when
having a look at the mathematical expression of the space/time modulated GVD, one denotes
that it depends also on the differential gain or loss term, however GVD profiles are nearly equal
in magnitude as shown in Fig. 45. This contrast is due to the fact that the differential gain
or loss term plays a role of loss in the expression of the amplitude and the role of gain in the
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expression of GVD. This is an advantage for the waves which become more stable as observed
in Figs. 47 and 48. As the vector NLS equations describe extreme waves with higher accuracy
than the scalar NLS equation models, let use the vector nonparaxial NLS equations to enrich
the work.

3.7 The influence of combined effects on the numerical solutions of
vector nonparaxial nonlinear Schrödinger equations with con-
stant coefficients

3.7.1 Model

To illustrate the nonparaxiality, optical activity and walk-off effects on the propagation of
nonparaxial chiral optical rogue waves, one derives from the model obtain in Eq. (C25), the
vector nonparaxial NLS equations with constant and modulated coefficients which governs the
propagation of rogons in optical fibers filled with chiral materials. So doing, the coupled system
of the nonparaxial NLS equation with constant coefficients is given by

dψ1ξξ + iψ1ξ + Pψ1ττ − iγψ1τττ + iµψ1 ∓Dψ1 − C
(
|ψ1|2 + |ψ2|2

)
ψ1 + iα3

(
|ψ1|2 + |ψ2|2

)
ψ1τ

+(η ± iσ)ψ1τ = 0,

dψ2ξξ + iψ2ξ + Pψ2ττ − iγψ2τττ + iµψ2 ∓Dψ2 − C
(
|ψ1|2 + |ψ2|2

)
ψ2 + iα3

(
|ψ1|2 + |ψ2|2

)
ψ2τ

+(η ± iσ)ψ2τ = 0.
(3.141)

To simplify the expressions of waves functions, one sets ψ1 (ξ, τ) = u(ξ, τ) and ψ2 (ξ, τ) = v(ξ, τ).
In this part of work, let focus the attention on the generation and propagation of bright and
dark rogue wave solutions when the nonparaxial effect arises fundamentally from chiral optical
fibers.

3.7.2 Explicit algorithm of the model: difference-differential equations

To study the influence of combined effects of the nonparaxiality, optical activity and walk-off
on optical rogue wave propagation, one uses an algorithm scheme derived by Chamorro-Posada
et al. [61], namely, difference-differential equation method that has a wider applicability on
nonparaxial beam propagation methods. In this method, the finite difference formulae are used
to approximate derivatives with respect to ξ coordinate and then, the fast Fourier transforms
(FFTs) is used to compute efficiently the second-and third-order diffractions in the spectral
domain.

The finite difference formulae for the derivatives are given in the Appendix (G). Substituting
these formulae in the coupled nonparaxial NLS equations with constant coefficients, one obtains
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the difference-differential equations below

un+1(τ) =
1

2d+i∆ξ
[(4d− 2P∆ξ2 ∂2

∂τ2
+ 2iγ∆ξ2 ∂3

∂τ3
− 2iµ∆ξ2 ± 2∆ξ2D + 2C∆ξ2

(
|un(τ)|2 + |vn(τ)|2

)
−2iα3∆ξ

2
(
|un(τ)|2 + |vn(τ)|2

)
∂
∂τ

− 2∆ξ2 (η ± iσ) ∂
∂τ
)un(τ)− (2d− i∆ξ)un−1(τ)],

vn+1(τ) =
1

2d+i∆ξ
[(4d− 2P∆ξ2 ∂2

∂τ2
+ 2iγ∆ξ2 ∂3

∂τ3
− 2iµ∆ξ2 ± 2∆ξ2D + 2C∆ξ2

(
|un(τ)|2 + |vn(τ)|2

)
−2iα3∆ξ

2
(
|un(τ)|2 + |vn(τ)|2

)
∂
∂τ

− 2∆ξ2 (η ± iσ) ∂
∂τ
)vn(τ)− (2d− i∆ξ) vn−1(τ)].

(3.142)
These equations define the explicit algorithm in which the effects of the transverse differential
operators ∂2

∂τ2
and ∂3

∂τ3
are computed efficiently and accurately by the FFTs. An implementation

on the index n gives us the numerical solutions of each component. One uses as initial conditions,
the rational solutions of the envelope fields [55], constructed by the DDT method where the
correspondence t→ ξ and x→ τ is considered

u(ξ, τ) = u01

(
p2τ2+p4ξ2+pτ(α1+βθ1)−iα1p2ξ+βθ1

p2τ2+p4ξ2+β(pτ+1)

)
v(ξ, τ) = v01

(
p2τ2+p4ξ2+pτ(α2+βθ2)−iα2p2ξ+βθ2

p2τ2+p4ξ2+β(pτ+1)

)
,
. (3.143)

where the parameters are

u01 = a1 exp (i (q1τ − v1ξ)) , v01 = a1 exp (i (q2τ − v2ξ)) , v1 = q1
2 + 2 (a1

2 + a2
2) ,

v2 = q2
2 + 2 (a1

2 + a2
2)α1 =

4p2

p2+4q12
, α2 =

4p2

p2+4q22
, θ1 =

2q1+ip
2q1−ip , θ2 =

2q2+ip
2q2−ip ,

(3.144)
with

p = 2Im(λ+ k) , χ = Im(k) , q1 + q2 = 2Re(λ+ k),

q1 − q2 = 2q , β = p3

χ(p2+4q1q2)
, k = 2.36954 + 1.1972i,

λ = −1.69162− 1.79721i.

(3.145)

3.7.3 Numerical representations

To plot the numerical solutions, one chooses appropriately, free functions T1(ξ), T0(ξ), µ(ξ) and
γ (ξ) and the Jacobian elliptic functions below [84]

dn(z, k) = 1− k2 sin (z)2

2
,

cn(z, k) = cos(z)− k2 sin(z)
(
z−sin(z) cos(z)

4

)
,

sn(z, k) = sin(z)− k2 cos(z)
(
z−sin(z) cos(z)

4

)
.

(3.146)

The parameters are chosen in order to be bounded in the intervals −10 < ξ < 10 and −10 <

τ < 10. Curves are plotted with the help of Matlab through a pseudospectral method. So doing,
one obtains identical right-and left-hand of nonparaxial chiral optical vector rogue waves with
constant coefficients [see Figs. 49, 50 and 51].

These representations show the rapid convergence of the pseudo spectral method based
on the difference-differential equation method [61] when ∆ξ/d → 0. In the case of constant
coefficients, it can be seen that the vector nonparaxial chiral optical rogue waves are localized
in space and time as usual rogue waves and that the forward and backward of each component
are similar. It is noticed that the mixture of bright and dark structures on each component
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Figure 49: Nonparaxial chiral optical vector rogue waves with constant coefficients on the right-and left-hands |ψ1,2(ξ, τ)|
where the parameters are a1 = 3, a2 = 3, d = 10, P = −0.5, γ = 0.4, µ = 0.3, D = ±0.6, C = 2, α3 = 0.2, η = 0.5,
σ = ±0.1, k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4, and k7 = 0.5. Here, the initial conditions take the
form of exact solutions (3.143), (3.144) and (3.145).

Figure 50: 2D representations of the nonparaxial chiral optical vector rogue waves with constant coefficients in both
hands where the initial conditions take the form of exact solutions (3.143), (3.144) and (3.145) with the following
parameters a1 = 1, a2 = 1, d = 100, P = −0.5, γ = 0.4, µ = 0.3, D = ±0.6, C = 2, α3 = 0.2, η = 0.5, σ = ±0.1,
k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4 and k7 = 0.5.
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Figure 51: Nonparaxial chiral optical vector rogue waves with constant coefficients in both hands, where the initial
conditions are expressed in the form of exact solutions (3.143), (3.144) and (3.145) with the parameters a1 = 1, a2 = 1,
d = 10, P = −0.5, γ = 0.4, µ = 0.3, D = ±0.6, C = 2, α3 = 0.2, η = 10, σ = ±10, k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4,
k5 = 0.2, k6 = 0.4 and k7 = 0.5.

are due to the coupling of vectorial model on the one hand, and to the interaction between
waves as consequence of narrowness of the two components in the system, on the other hand.
The 2D representations of Fig. 50 showed the limit of the extension of bright and dark spectral
structures in the retarded time axis at τ = 0. One can see how the intensity of each spectrum
increases when τ → 0 and the attenuation when moving from each side of τ = 0. It is noted
that the weak values of the walk-off are responsible for the wave smoothing.

3.7.4 Influence of combined effects on the vector nonparaxial chiral nonlinear
Schrödinger equations with modulated coefficients

3.7.5 Model and explicit algorithm

To improve the description of the waves, one uses the vector nonparaxial chiral NLS equations
with modulated coefficients. From the model obtained in Eq. (C25), the coupled system of the
nonparaxial NLS equations in chiral optical fibers with coupled space-dependence coupling field
is expressed as

d(ξ)ψ1ξξ + iψ1ξ + P (ξ, τ)ψ1ττ − iγ(ξ)ψ1τττ + iµ(ξ, τ)ψ1 ∓D(ξ, τ)ψ1 − C(ξ, τ)
(
|ψ1|2 + |ψ2|2

)
ψ1

+iα3(ξ)
(
|ψ1|2 + |ψ2|2

)
ψ1τ + (η(ξ)± iσ(ξ, τ))ψ1τ = 0,

d(ξ)ψ2ξξ + iψ2ξ + P (ξ, τ)ψ2ττ − iγ(ξ)ψ2τττ + iµ(ξ, τ)ψ2 ∓D(ξ, τ)ψ2 − C(ξ, τ)
(
|ψ1|2 + |ψ2|2

)
ψ2

+iα3(ξ)
(
|ψ1|2 + |ψ2|2

)
ψ2τ + (η(ξ)± iσ(ξ, τ))ψ2τ = 0.

(3.147)
It can been seen from Eqs. (3.103) that the differential gain and loss term η(ξ), the self-
steepening α3(ξ), the gain or loss term µ(ξ, τ) and the self-phase modulation C(ξ, τ), depend on
chiral parameter Tc through the relation CT = 1±KTc and the linear birefringence D(ξ, τ) and
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walk-off term σ(ξ, τ) are functions of chiral parameter Tc. Considering the order of polynomials
of each parameter of the number like Eq. (3.102) obtained from the analytical results, one can
choose them as Jacobian elliptic functions for the good stability of the waves and their forms,
arbitrarily

α3(ξ) = CT × cn(ξ, k), η(ξ) = CT × sn(ξ, k),

d(ξ) = dn(ξ, k), γ(ξ) = cn(ξ, k),

C(ξ, τ) = (dn(ξ, k)τ 2 + cn(ξ, k)τ + sn(ξ, k))× CT ,

P (ξ, τ) = −(dn(ξ, k)τ 2 + cn(ξ, k)τ + sn(ξ, k)),

µ(ξ, τ) = (dn(ξ, k)τ 3 + cn(ξ, k)τ 2 + sn(ξ, k)τ + dn(ξ, k))× CT ,

σ(ξ, τ) = (dn(ξ, k)τ 4 + cn(ξ, k)τ 3 + sn(ξ, k)τ 2 + dn(ξ, k)τ + cn(ξ, k))×KTc,

D(ξ, τ) = (dn(ξ, k)τ 6 + cn(ξ, k)τ 5 + sn(ξ, k)τ 4 + dn(ξ, k)τ 3 + cn(ξ, k)τ 2 + sn(ξ, k)τ

+dn(ξ, k))×KTc.
(3.148)

One may also choose them as polynomial functions but our interest is motivated by functions
which can generate stable waves. As the propagation variable ξ tends to n∆ξ in the discretized
domain, the Jacobian elliptic functions take the form

dn(ξ, k) → dn(n∆ξ, k) = 1− k2 sin (n∆ξ)2

2
,

cn(ξ, k) → cn(n∆ξ, k) = cos(n∆ξ)− k2 sin(n∆ξ)
(
n∆ξ−sin(n∆ξ cos(n∆ξ))

4

)
,

sn(ξ, k) → sn(n∆ξ, k) = sin(n∆ξ)− k2 cos(n∆ξ)
(
n∆ξ−sin(n∆ξ cos(n∆ξ))

4

)
.

(3.149)

It can be seen that, by splitting Eqs. (3.147) in the right-and left-hands, four coupled non-
paraxial NLS equations which differ by the signs of linear birefringence and walk-off term are
obtained. The substitution of the finite difference formulae in Eqs. (3.147) yields

un+1(τ) =
1

2d+i∆ξ
[(4d− 2P∆ξ2 ∂2

∂τ2
+ 2iγ∆ξ2 ∂3

∂τ3
− 2iµ∆ξ2 ± 2∆ξ2D

+2C∆ξ2
(
|un(τ)|2 + |vn(τ)|2

)
− 2iα3∆ξ

2
(
|un(τ)|2 + |vn(τ)|2

)
∂
∂τ

−2∆ξ2 (η ± iσ) ∂
∂τ
)un(τ)− (2d− i∆ξ)un−1(τ)],

vn+1(τ) =
1

2d+i∆ξ
[(4d− 2P∆ξ2 ∂2

∂τ2
+ 2iγ∆ξ2 ∂3

∂τ3
− 2iµ∆ξ2 ± 2∆ξ2D

+2C∆ξ2
(
|un(τ)|2 + |vn(τ)|2

)
− 2iα3∆ξ

2
(
|un(τ)|2 + |vn(τ)|2

)
∂
∂τ

−2∆ξ2 (η ± iσ) ∂
∂τ
)vn(τ)− (2d− i∆ξ) vn−1(τ)].

(3.150)

3.7.6 Numerical simulations

By using the difference-differential equation method and fast Fourier transforms (FFTs), let
plot the numerical solutions of the coupled nonparaxial chiral NLS equations of each beam (ψ1

and ψ2) in both hands, left(-) and right(+) [see Figs. 52, 53 and 54].
Throughout these figures, one remarks that the structure of each component is similar from

one hand to the other but a notable difference is observed in the amplitude as observed in
Fig. 52. The 2D representations depict in Fig. 53(a), the symmetries of the bright and dark
maxima through the retarded time axis τ and the dark-dark symmetries through the propaga-
tion distance axis ξ in both side. In Fig. 53(b), a significant decrease of the envelope fields is
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Figure 52: The nonparaxial chiral optical rogue waves with management are derived from Eqs. (3.150), where the
parameters of the base equations are given in relations (3.148) and (3.147) and the initial conditions take the form of
exact solutions given in relations (3.143), (3.144) and (3.145) with the following arbitrary constant a1 = 3, a2 = 3,
k5 = 0.2, k6 = 0.4, k7 = 0.5, P (ξ, τ) = dn(ξ, k)τ2 + cn(ξ, k)τ + sn(ξ, k), KTc = 0.8 and CT = 1±KTc.
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Figure 53: The 2D representation of the nonparaxial chiral optical vector rogue waves where variable coefficients are
derived from Eqs. (3.150), and the parameters of the base equations are given in relations (3.148) and (3.147) and
the initial conditions take the form of exact solutions given in relations (3.143), (3.144) and (3.145) with the following
arbitrary constant a1 = 1, a2 = 1, k5 = 0.2, k6 = 0.4, k7 = 0.5, P (ξ, τ) = dn(ξ, k)τ2 + cn(ξ, k)τ + sn(ξ, k), KTc = 0.8

and CT = 1±KTc.
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Figure 54: Nonparaxial chiral optical vector rogue waves with modulated coefficients are derived from Eqs. (3.150),
where the parameters of the base equations are given in relations (3.148) and (3.147) and where the initial conditions
take the form of exact solutions given in relations (3.143), (3.144) and (3.145) with the following arbitrary constant
a1 = 1, a2 = 1 and k5 = k6 = k7 = 1, d(ξ) = 10 × dn(ξ, k), P (ξ, τ) = −(dn(ξ, k)τ2 + cn(ξ, k)τ + sn(ξ, k)), KTc = 0.8

and CT = 1±KTc.
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observed when the amplitudes of the solutions are reduced. One also denotes a similitude on
the structure and amplitude in Figs. 54. The appearance of curvatures in the four components
are due to the unity value of their moduli as expressed in Fig. 54.

3.8 Contrast of optical activity and rogue wave propagation in chiral
materials

The term chirality [95] is a well-known concept of great interest in chemistry, biology, phar-
macology and optical fields [357, 358]. In the context of chemistry, chirality refers to molecules
that lack mirror symmetry. One of the most universally known example is the human hands.
In fact, no matter how the two hands are oriented, it is impossible for the both hands to be
coincide through translations and rotations. In the context of optics, chirality refers to opti-
cal activity which is the ability to rotate plane polarized light. The observe rotation of this
plane polarized light can be directed to the right-hand, that is a clockwise rotation, called
dextrorotatory or to the left-hand, that is a counter clockwise rotation, called levorotatory.
As consequence, enantiomers or optical isomers are designated in the literature as right-and
left-handed [203]. Therefore, chirality can be defined as fundamental property of molecules and
materials that leads to optical activity effects [204]. Among chiral materials, chiral optical fibers
are materials of crucial importance. They give rise to optical activity effects such as optical ro-
tation and circular dichroism which are optical characterization techniques of molecules [357].
In fact, these effects are used to investigate the structures of molecules and to elucidate the
secondary structure of biomolecules. Optical activity has attracted and inspired great effort in
the developing of active photonic chiral metamaterials [205]. These materials are designated to
deliver an unusual electromagnetic response, in spite of the fact that optical activity is a linear
effect. Optical activity effects have been found in both linear and nonlinear optics. In nonlinear
optical fields, others characterization techniques like the second-harmonic generation circular
dichroism (SHG - CD) and the second-harmonic generation optical rotatory dispersion (SHG
- ORD) were undertaken by T. Verbiest et al. [206]. Later, A. Bruyere et al. [207] have stud-
ied the formation of chiral supramolecular aggregates at an air-water interface with the SHG
technique. Futhermore, Huttunen et al. [208] have shown that the third-harmonic generation
circular dichroism (THG - CD) effects could occur in biological materials. Briefly, many works
have been done in chiral metamaterials [209], nanomaterials [210, 211] and in photonic crystals
[212]. In view of great scientific importance of chiral molecules in life science and pharmaceuti-
cal industries [92], One mainly focuses the interest on the impact of chiral materials like chiral
optical fibers in optical communication. Several nonlinear phenomena have been studied in chi-
ral media [84, 85, 86] with the objectives to control the chiral level and protect organic chiral
materials from damage during the processing temperature of silica. Therefore, controllability
of spontaneous waves has been performed in both theoretical and experimental approaches to
investigate the interesting phenomena of rogue waves in optical fibers. One focuses the atten-
tion on the contrast of optical activity to elucidate the interplay of chiral optical fiber on rogue
wave propagation. This investigation is based on an extended integrable Hirota equation with
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linear and nonlinear effects, namely, nonparaxial chiral NLS equation.

3.8.1 Model and integrability constraints

To reveal the contrast of optical activity and elucidate the interplay of chiral optical fibers on
rogue wave propagation, one considers an extended NLS equation with linear and nonlinear
effects [91]

dψξξ + iψξ + Pψττ − iγψτττ + r1 (iµ∓D)ψ − C|ψ|2ψ + iα3|ψ|2ψτ + r2 (η ± iσ3)ψτ = 0,

(3.151)
where ξ and τ (z and t) are the scaled (unscaled) coordinates in the propagation direction and
temporal dimension, respectively. ψ (ξ, τ) is the envelope field of the forward and backward
components of the waves. In regard of the derivation of the above model (Eq. (3.151)) in
reference [91], the parameters r1 and r2 are equal to unity. Nevertheless, these parameters can
be different in these cases. In the absence of either the linear gain/loss (µ) or linear birefringence
(D), on the one hand, and in the absence of either the differential gain/loss (η) or linear group
velocity (σ3), on the other hand, the parameters r1 and r2, respectively, can be different to
the unity depending now to the term in factor to them. Moreover, these parameters depend in
major cases, to the physical system. Thus, for r1 = r2 = 1, the relations between the scaled
and unscaled variables stand for

τ = ω0
1/3β1/6

√
K′′(2K0)

1/6 t
′, ξ = ω0

2/3β1/3

(2K0)
1/3 z

′ = z
LD
,

LD =
(2K0)

1/3(1−K0
2Tc2)

β1/3ω0
2/3 =

−(1−K0
2Tc2)

2K0d
,

ψ (ξ, τ) = ω0
2/3β1/3

(2K0)
1/3 ϕ = −2K0dϕ,

ϕ = ΨR,L = Ex ± iEy,


Ex = Ex (z, t)

Ey = Ey (z, t)

,


t′ = t− 1

vg
z∗

z′ = z∗
, z∗ = z

(1−K0
2Tc2)

,

(3.152)
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where, ΨR,L are the right(R)-and left(L)-handed of wave components. Then, the parameters of
the Eq. (3.151) are

d = −β1/3ω0
2/3

(2k0)
4/3 , η = αC√

K′′ω0
1/3β1/6(2k0)

5/6 ,

γ = K′′′

6
β1/6ω0

1/3

(2K0)
1/6(K′′)

3/2 , C = 1±K0Tc,

µ = CΓ, Γ = ω0
1/3α

(2K0)
1/3β1/3

,

P = 1
2

(
1− k′2

K′′k0

)
, σ3 =

k0Tc(2k0)
7/6

√
K′′ω0

4/3β1/6
,

D = K0
2Tc(2K0)

1/3

β1/3ω0
2/3 , α3 =

C(2K0)
5/6β1/6

√
K′′ω0

2/3K0
,

(3.153)

with 

K ′ = ∂K
∂ω

= 1
vg

K ′′ = ∂K′

∂ω
→ GVD

K ′′′ = ∂K′′

∂ω
→ TOD

,



K0 =
ω0

v

v2 = 1
µ0ε0

β = µ0ε2

α = µ0σ

, (3.154)

in which, LD is the diffraction length of the beam, α, the attenuation coefficient, σ, the electri-
cal conductivity, ε0, the linear permittivity, ε2, the nonlinear permittivity, µ0, the permeability,
Tc, chiral parameter of the optical fiber, ω0, the frequency of the wave, K0, the wave number,
v, the light velocity and ϕ, the complex envelope of the optical field in the chiral fiber. Then,
coefficients d, P , γ, µ, D, C, α3, η and σ3 are nonparaxial, group-velocity dispersion (GVD),
third-order dispersion (TOD), linear gain or loss term, linear birefringence, self-phase modula-
tion (SPM), self-steepening (SS), differential gain or loss and linear group-velocity, respectively.

The envelope field ψ (ξ, τ) contains both forward and backward propagating components in
such a way that the change from the unscaled to scaled longitudinal coordinate of the oscillation
of the field is given by

exp {−iK±z} = exp

{
i
ξ

2d

(
1−K0

2Tc
2
)}

, (3.155)

where K± = K = K0. It can be seen from this relation (3.155) that apart from the wave
number K0, the scaled longitudinal coordinate is related to two important parameters. That
are the nonparaxial (d) and chiral parameter (Tc) which will improve the description of waves
propagating in chiral medium. Equation (3.151) contains other cases of NLS equation. If one
sets d = 0, P = 1

2
, γ = 0, µ = 0, D = 0, α3 = 0, η = 0 and σ3 = 0, Eq. (3.151)becomes the

standard NLS equation in the focusing regime for C = −1 and defocusing regime for C = 1.
If in addition to these conditions, d ̸= 0, Eq. (3.151) stands for the nonparaxial NLS equation.
The integrable Hirota equation is also obtained for d = 0, P = 1, γ = 2

√
2, µ = 0, D = 0,
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α3 = −6
√
2, η = 0, σ3 = 0 and C = −1. Equation (3.151) has been found as a nonparaxial

chiral NLS equation in our previous work [91]. This study is based now on the scalar form
with constant coefficients. In this case, instead of Jacobian elliptic functions, parameters of the
system will be taken as polynomial functions.

A higher-order NLS equation is eminently suitable to describe realistic problems when it
satisfies the integrability and controllability conditions. Throughout the term in factor to the
SS coefficient α3, it can be seen that Eq. (3.151) verifies the condition of controllability of
higher-order NLS equations [71]. The integrability of the model is satisfied for γ = α3

6C
, P = 1

2
,

r1 = r2 =
α3

2C
and d = 5α3

3C
. If α3 = 0, then, Eq. (3.151) is reduced to the standard NLS equation.

In the case where r1 = r2 = 1, let find the integrability constraints of the model by means of
similarity reduction method. Thus, let use the envelope filed in the form [71]

ψ (ξ, τ) = A(ξ)V [Z(ξ), T (ξ, τ)] exp {iρ (ξ, τ)} , (3.156)

to find the integrability conditions of the parameters related to the envelope field in which A(ξ)
is the amplitude, Z(ξ) the effective propagation distance, T (ξ, τ) the similitude variable and
V [Z(ξ), T (ξ, τ)] the complex field. The variable ρ (ξ, τ) is the phase of the wave. The substi-
tution of Eq. (3.156) into Eq. (3.151) gives a coupled system of partial differential equations
with constant coefficients

d(AξξV + 2AξZξVZ + 2AξTξVT + 2AZξTξVZT + AZξξVZ + ATξξVT
+AZξ

2VZZ + ATξ
2VTT − Aρξ

2V )− AV ρξ + P (AVTTTτ
2 + AVTTττ − AV ρτ

2)

+γ(3AVTTττρτ + 3AVTTτρττ + 3AVTTTτ
2ρτ + AV ρτττ − AV ρτ

3)

∓DAV − CA2|V |2AV − α3A
2|V |2AV ρτ + ηATτVT ∓ σ3AV ρτ = 0,

(3.157)

d(AV ρξξ + 2AξρξV + 2AZξρξVZ + 2AρξTξVT ) + AξV + AVZZξ + AVTTξ
+P (AV ρττ + 2AVTTτρτ )− γ(AVTTτττ + 3AVTTTτTττ + AVTTTTτ

3

−3AVTTτρτ
2 − 3AV ρττρτ ) + µAV + α3A

2|V |2AVTTτ + ηAV ρτ ± σ3ATτVT = 0,

(3.158)

where the scripts of differential equations are simplified as A (ξ) = A, Z (ξ) = Z, T (ξ, τ) = T ,
ρ (ξ, τ) = ρ and V [Z(ξ), T (ξ, τ)] = V . It is of crucial interest to reduce Eq. (3.151) into the
integrable Hirota equation which has a well-known integrability conditions [116], satisfying the
complex filed of the ansatz V [Z(ξ), T (ξ, τ)]

i
∂V

∂Z
= −∂

2V

∂T 2
+G|V |2V + 2

√
2iν

(
∂3V

∂T 3
+ 3|V |2∂V

∂T

)
. (3.159)

Thus, the coupled system can be reduced as follows

γTτTττ = 0, (3.160)

Tξ + 2dTτρτ + 2PTτρτ ± σ3Tτ − γ (Tτττ − 3Tτρτ
2) = 0, (3.161)

Aξ + A(dρξξ + ρττP + 3γρττρτ + µ+ ηρτ ) = 0, (3.162)
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γTτ
3 + 2

√
2νZξ = 0, (3.163)

AξV + AZξVZ + ATξVT = 0, (3.164)

α3A
2Tτ − 6

√
2νZξ = 0, (3.165)

dTξξ + PTττ + 3γ (Tττρτ + Tτρττ ) + ηTτ = 0, (3.166)

Zξ + dTξ
2 + PTτ

2 + 3γρτTτ
2 = 0, (3.167)

ρξ + dρξ
2 + Pρτ

2 + γ (ρτ
3 − ρτττ )± σ3ρτ ±D = 0, (3.168)

GZξ + A2 (C + α3ρτ ) = 0, (3.169)

AξξV + 2AξZξVZ + 2AξTξVT + 2AZξTξVZT + AZξξVZ + AZξ
2VZZ = 0. (3.170)

From this preliminary method of rogue wave finding, the constraints are deduced from the
differential equations of which the simplified forms stand from Eq. (3.160) to Eq. (3.170),
respectively, as follows: −3AVTT ̸= 0, AVT ̸= 0, V ̸= 0, −AVTTT ̸= 0, 2dρξ ̸= 0, A|V |2VT ̸= 0,
AVT ̸= 0, AVTT ̸= 0, −AV ̸= 0, −A|V |2V ̸= 0 and d ̸= 0. These conditions play an important
role in the sense that they are necessary to find the integrability constants of parameters related
to the envelope field.

3.8.2 Analytical and numerical rogue wave solutions

To construct the analytical rogue wave solutions, one firstly finds the parameters of the envelope
field by solving the above differential equations. The integration is made from the simplest
differential equation to the highly complex one. In doing so, Eq. (3.160) yields for γ(ξ) ̸= 0 and
TτTττ = 0 to the similarity variable

T (ξ, τ) = T1(ξ)τ + T0(ξ), (3.171)

where the arbitrary functions T1(ξ) and T0(ξ) should be defined. One notices that Tττ = 0 is
the second derivative condition of the similarity variable in the temporal dimension. Equation
(3.163) gives the effective propagation distance

Z(ξ) = −
√
2γ

4ν

ξ∫
0

T1(s)
3ds. (3.172)

The substitution of expressions (3.171) and (3.172) into Eq. (3.165) tends to

A(ξ) =

√
−3γT1(ξ)

2

α3

, (3.173)
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with α3 < 0 and γ > 0. Then, the substitution of expressions (3.172) and (3.173) into Eq.
(3.169) gives the phase of the envelope field which can be written as

ρ (ξ, τ) = −
(
GT1(ξ)

6
√
2ν

+
C

α3

)
τ + ρ0(ξ), (3.174)

where ρ0(ξ) should be defined by taking into account, the second derivative condition in the
temporal dimension of the phase, that is, ρττ = 0. Through relations (3.171) and (3.174) one
finds from Eq. (3.166), the second derivative condition in the propagation direction of the
similarity variable

Tξξ =
−ηT1(ξ)

d
. (3.175)

The substitution of relations (3.171) and (3.174) in Eqs. (3.161) and (3.167) shows that the
first derivative of the similarity variable is independent of the temporal variable τ . This means
that T1ξ = 0 and T0ξ = Tξ ̸= 0. Therefore, T1(ξ) must be a constant. Thus, the arbitrary
function T0(ξ) deduced from Eq. (3.175) becomes

T0(ξ) =
−ηT1(ξ)

2d
ξ2. (3.176)

The substitution of relations (3.171), (3.174) and (3.173) in Eqs. (3.162) and (3.168) shows
that the first derivative of the phase is independent of the temporal variable τ . This means
that ρ1ξ = 0 and ρ0ξ = ρξ ̸= 0. This implies that ρ1(ξ) = −

(
GT1(ξ)

6
√
2ν

+ C
α3

)
is a constant. This

affirmation is true as it has been shown that T1(ξ) is a constant. Therefore, the second derivative
condition of the phase in the propagation direction yields

ρξξ =
1

d

[
η

(
GT1(ξ)

6
√
2ν

+
C

α3

)
− µ

]
. (3.177)

From this second derivative condition, one deduces the arbitrary function of the phase

ρ0(ξ) =
1

2d

[
η

(
GT1(ξ)

6
√
2ν

+
C

α3

)
− µ

]
ξ2. (3.178)

By choosing the arbitrary constant T1(ξ) = 2, the parameters are summarized as follows

T (ξ, τ) = 2τ − η
d
ξ2,

Z(ξ) = −2
√
2γ

ν
ξ,

A(ξ) =
(

−12γ
α3

) 1
2
,

{
γ > 0,

α3 < 0,

ρ (ξ, τ) = −
(√

2G
6ν

+ C
α3

)
τ + 1

2d

[
η
(√

2G
6ν

+ C
α3

)
− µ

]
ξ2.

(3.179)

In view of great success of the Peregrine soliton in the modelling of realistic rogue wave, one
constructs the rogue wave solutions through the modified Darboux transformation method.
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From the well-known rogue wave solutions of the integrable Hirota equation [116], one deduces
the first-and second-order of the complex field V [Z(ξ), T (ξ, τ)] which is valid for G = −1 for
rogue wave finding. Therefore, the different expressions of the complex field yield

V1 [Z(ξ), T (ξ, τ)] =

[
1− G1 + iH1

D1

]
exp {iZ(ξ)} , (3.180)

where
G1 = 4, H1 = 8Z(ξ),

D1 = 1 +
[√

2T (ξ, τ) + 12νZ(ξ)
]2

+ 4Z(ξ)2.

(3.181)

and
V2 [Z(ξ), T (ξ, τ)] =

[
1 +

G2 + iZ(ξ)H2

D2

]
exp i {Z(ξ)} . (3.182)

where G2, H2 and D2 are given by the relations

G2 = −48T 4 − 1152
√
2νZT 3 − 144T 2[4Z2 (36ν2 + 1) + 1]− 576

√
2νZT×

[12Z2 (12ν2 + 1) + 7]− 192Z4 [216 (6ν4 + ν2) + 5]− 864Z2 (44ν2 + 1)− 36,

H2 = −96T 4 − 2304
√
2νZT 3 − 96T 2[4Z2 (108ν2 + 1)− 3]− 1152

√
2νZT×

[4Z2 (36ν2 + 1)]− 384Z4(36ν2 + 1)
2 − 192Z2 (180ν2 + 1) + 360,

D2 = 8T 6 + 288
√
2νZT 5 − 432Z4 (624ν4 − 40ν2 − 1) + 36Z2 (556ν2 + 11) + 9

+64Z6(36ν2 + 1)
3
+ 96

√
2ZT 3 [12Z2 (60ν2 + 1)− 1]

+12T 4[4Z2 (180ν2 + 1) + 1] + 6T 2[16Z4 [216ν2 (30ν2 + 1)− 1]

−24Z2 (60ν2 + 1) + 9] + 72
√
2νZT [16Z4 (36ν2 + 1) + 8Z2 (1− 108ν2) + 17].

(3.183)

Then, collecting the founded variables with the above solutions of complex field together, one
obtains the first-and second-order rational solutions, related to a particular solution of Eq.
(3.151), respectively, in the form

ψ1 = A(ξ)

[
1− G1 + iH1

D1

]
exp {iZ(ξ) + iρ (ξ, τ)} , (3.184)

ψ2 = A(ξ)

[
1 +

G2 + iZ(ξ)H2

D2

]
exp {iZ(ξ) + iρ (ξ, τ)} , (3.185)

where parameters are given in relations (3.179), (3.180), (3.181), (3.182) and (3.183). These first-
and second-order rational solutions are used to describe the propagation of nonparaxial optical
rogue waves in chiral materials. The second-order rational solution is due to the collision between
ultrashort pulses in the optical fiber. The particularity of these solutions is the simultaneous
controllability of their amplitudes through the parameters, which can be used to manage their
amplitudes and shapes. As the nonparaxiality, TOD, SS, SPM and differential gain or loss terms
step in the system, they can therefore provide a more convenient and controlled environment
for further applications in optical communication.
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The methodology of the numerical integration is based on a pseudo-spectral method namely,
difference-differential equation method. The basic of the pseudo-spectral method is to use the
discrete Fourier transform to evaluate the spatial derivative of the model. Nevertheless, within
the context of optical fiber, these derivatives depend on coordinates of the propagation direction;
those are ψξξ and ψξ which stand for the nonparaxial and propagation terms, respectively.
The using of their finite difference formulae with errors of second-order gives the difference-
differential equation below related to the model (Eq. (3.151)) for ψ (ξ, τ) = u (ξ, τ)

un+1(τ) =
1

2d+i∆ξ
[(4d− 2P∆ξ2 ∂2

∂τ2
+ 2iγ∆ξ2 ∂3

∂τ3
− 2iµ∆ξ2 ± 2∆ξ2D + 2C∆ξ2|un(τ)|2

−2iα3∆ξ
2|un(τ)|2 ∂

∂τ
− 2∆ξ2 (η ± iσ) ∂

∂τ
)un(τ)− (2d− i∆ξ)un−1(τ),

(3.186)
with 

un(τ) ≡ u (n∆ξ, τ)

un−1(τ) ≡ u ((n− 1)∆ξ, τ)

un+1(τ) ≡ f (un(τ), un−1(τ))

. (3.187)

Equation (3.186) defines the explicit algorithm in the discretized domain in which the prop-
agation variable ξ tends to n∆ξ. Then, the transverse differential operators ∂2/∂τ 2, ∂3/∂τ 3

and ∂/∂τ are computed efficiently and accurately by the fast Fourier transforms (FFTs). The
accuracy and convergence of this method has been demonstrated in the literature [61]. This
method has the advantage of being explicit, means, simple implementation and low computa-
tion of the model and then its flexibility in the modeling of nonparaxial NLS equation with
higher-order nonlinear effects. In this work, the first-and second-order analytical solutions are
used as initial conditions for the numerical simulation. Therefore, the implementation of the
index n in Eq. (3.186), in view of relation (3.187), gives the numerical solutions of optical rogue
wave propagating in chiral materials.

3.8.3 Contrast of optical activity and interplay of chiral materials

The representation of analytical and numerical solutions of optical rogue waves constructed in
previous section is of special interest, in the sense that their profiles will reveal the contrast of
optical activity. It can be seen from relation (3.153) that, among coefficients which are functions
of chiral parameter (Tc), η, C and µ are two components chiral parameters, whereas D and σ3
are one component chiral parameters. Therefore, they can be chosen as follows

α3 = −α0 (1±K0Tc)

α0 = 4,

{
α3+ = −6

α3− = −2
,


η = η0 (1±K0Tc)

η0 =
2
3
,

{
η+ = 1

η− = 1
3

,


C = C0 (1±K0Tc)

C0 = −2
3
,

{
C+ = −1

C− = −1
3

,


µ = µ0 (1±K0Tc)

µ0 = 0.2,

{
µ+ = 0.3

µ− = 0.1
,

(3.188)

where K0Tc = 0.5 and with γ = 0.2, G = −1, P = 0.5, D = 0.06 and σ3 = 0.1. To plot
the first-and second-order analytical rogue wave solutions, one uses a MATLAB program in
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which the coordinates ξ, τ are bounded in the interval [−10, 10]. Thus, the first-order rogue
wave solutions depicted in Figs. 55, 56 and 57 are computed from Eqs. (3.179), (3.181), (3.184)
and (3.188). Then, the second-order rogue wave solutions represented in Figs. 58, 59 and 60 are
computed from Eq. (3.179), (3.183), (3.185) and (3.188). Each figure is obtained for a different
value of parameters d and ν as shown in figure captions. The guideline techniques given above
are of special interest for the numerical simulation in Figs. 61 and 62. The differential operators
are expressed in the spectral domain through the FFTs in which the spectral parameter k is
defined for N = 128 iterations with the given length L = 40. Therefore, the implementation of
n in Eq. (3.186) is done for 102 iterations in the propagation direction ξ and where ∆ξ = 0.05.
According to the above parameters, the analytical and numerical representations are illustrated.
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Figure 55: Plot (a) and contour plot (b) of the first-order rogue wave solution: Eq. (3.184), with d = 10 and ν = 0.6.

Due to the electromagnetic nature of chiral medium, there are two coupled characteristic
waves in chiral optical fibers. This property of chiral medium is therefore observed in analytical
and numerical representations throughout the LCP and RCP components. The structure of the
waves are in accordance with rogue waves features. The short lifetime of rogue wave profiles is
well observed throughout the point of their appearance and disappearance [see Figs. 55, 56, 58,
59, 60 and 61]. Figures 58, 59, 60, 61 and 62 exhibit the collision of rogue waves, but it can be
seen that their amplitudes are almost the same when one compares the maximum peak in Figs.
55 and 58 and then, 56 and 59. It means that after collision, the waves keep their amplitude.
This is a property of solitary waves, but as these waves are also localized in both space (τ) and
time (ξ), they are usual rogue waves. Nevertheless, a difference is observed when comparing
the high peak in Figs. 57 and 60. This difference is due to the weak value of the nonparaxial
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Figure 56: 3D representation (a) and contour plot (b) of the first-order analytical rogue wave amplitude of Eq. (3.184),
for d = 0.5 and ν = 0.6.
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Figure 57: First-order amplitude of nonparaxial chiral optical rogue waves of Eq. (3.184), with d = 0.05 and ν = 6.
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Figure 58: Second-order amplitude of nonparaxial chiral optical rogue waves of Eq. (3.185), with d = 10 and ν = 0.6.
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Figure 59: Plot (a) and contour plot (b) of the second-order rogue wave solution: Eq. (3.185), with d = 0.5 and ν = 0.6.
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Figure 60: 3D representation (a) and contour plot (b) of the second-order analytical rogue wave amplitude of Eq.
(3.185), for d = 0.05 and ν = 6.
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(a) (b)

(c) (d)

Figure 61: 3D (a) and 2D (b) representations of the first-order numerical rogue wave amplitude of Eq. (3.151), for
d = 10 and ν = 6.
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(a) (b)

(c) (d)

Figure 62: 3D (a) and 2D (b) representations of the second-order numerical rogue wave amplitude of Eq. (3.151), for
d = 10 and ν = 6.
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parameter d which perturbs, on the one hand, the both localization to coordinates and, on the
other hand, the short propagation of rogue waves. This can be an advantage in the case where,
one needs to extend the lifetime of rogue waves in physical systems. Moreover, this depicts the
behavior of waves in systems where the paraxial approximation is violated. A similar behavior
is also observed in Figs. 61, but this time with a high value of the parameter d. It can be
seen that the property of central character of the maximum peak of rogue wave is verified, but
the property of localization of rogue wave prototypes is not anymore valid. In contrary to Fig.
61 which depicts the first-order solution, Fig. 62 (second-order solution) presents a different
behavior, in the sense that the both localization and central character properties remain valid.
This confirms the evidence of second-order rogue wave solutions of being more interesting in
view of their precisions in realistic problems in optics.

One can added that Figs. 55, 56, 58 , 59, and 62 depict the PS behavior throughout their both
localization to coordinates, whereas Figs. 57, 60, and 61 depict a behavior near to the ABs. In
the above figures, the diversity of shape is also observed. One denotes structures with one peak
and two holes [see Figs. 55 and 56] and then structures with triple peaks and two holes [see Figs.
58 and 59]. More specifically, one founds a rogue wave structure with a multiplicity of peaks
surrounding by holes which become linear to the vicinity of coordinates. This phenomenon is
due to the degeneration of the rogue wave structure which start by the break up of joined holes
then by the degeneration of holes which loss their lobes so far to become linear structures. As
a consequence, a weak value of nonparaxiality can be benefit to reduce the amplitude of waves
in physical systems when the MI increases drastically. This framework can be used to improve
the stability of ultrashort pulses during their propagation in chiral optical fibers. In contrast
to second-order analytical rogue waves which has butterfly structures, numerical rogue wave
solutions have a rectilinear structures in both hands on the first-order [see Fig. 61] and one
peak issue from the collision of waves at the center of coordinates, more visible in second-order
numerical solutions [see Fig. 62]. Moreover, Figs. 55, 58 and 61 exhibit a linear motions, whereas
Figs. 56, 57, 59, 60 and 62 reveal a rotational motions. The slight rotation of the shape observed
in Figs. 56 and 59 is amplified on Figs. 61 and 60, respectively. The amplification of rotation
motion is due to the weak value of nonparaxial parameter d. This behavior of motion conversion
is a property of chiral materials [359]. A concordance is observed on the motion conversion
property as shown in Fig. 57 (first-order rogue wave analytical solutions) and in Figs. 61 (c)
and (d) (first-order rogue wave numerical solutions), on the one hand. On the other hand,
a concordance can be observed on the shape of the maximum peak, central character of their
localization and on the amplitude as shown in Figs. 58 (a) and 59 (a) (for the second-order rogue
wave analytical solutions) and in Figs. 62 (a),(b) (for the second-order rogue wave numerical
solutions). Moreover, the contours plot of the LCP (|ψ2− (ξ, τ)|) in Fig. 60 (a) (second-order
rogue wave analytical solution) reveals as shown in Fig. 62, the rotational conversion property
of chiral materials. Moreover, the conversion is also due to the chiral parameter related to
coefficients of the original equation. Those coefficients are related to the effective propagation
distance, similarity variable, amplitude and phase of the wave. These are the main parameters
responsible of rotational conversion on the LCP and RCP components. However, the prompt
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action of rotational conversion is observed for a high value of parameter ν related to TOD
and weak value of nonparaxial parameter d. The inverse process is also observed for a weak of
parameter ν and high value of parameter d.

3.9 Conclusion

In this chapter, derivation of extended NLS models and construction of rational solutions
related to rogue wave prototypes have been done to study the generation and propagation as
well as the controllability of rogue waves in optical fibers and chiral media.

First-and the second-order rational analytical solutions related to rogue wave have been
presented through the nonparaxial NLS equation. The similarity and Darboux transformations
method have been used to construct the rational solutions of the model. Due to the richness
of this method which can also be applied to the higher orders, the effect of nonparaxiality on
rogue wave propagation as been revealed. It has been shown that for height values of nonparaxial
parameter, the rogue wave intensities were increasing rapidly through the simultaneous process
on the increase of the length and decrease of the width peak. The rapidity of nonparaxial
optical rogue waves was observed and recognized higher compare to the ones obtained from
the standard NLS equation. The effects of polynomial and Jacobian elliptic functions on rogue
waves have been examined. It has been recorded that the nonparaxiality moves the higher peak
of rogue waves from the center to the periphery. It has been concluded that the displacement of
the wave peak from the center to the periphery is due to height velocity of nonparaxial rogue
waves.

Then, the derivation of the NLS equation in chiral optical fiber with right-and left-hand
nonlinear polarization has been done. This model has been used to describe the propagation of
optical rogue waves in chiral fiber. Through the symmetry reduction and the mDT methods,
first-and second-order chiral optical rogue waves have been constructed from the chiral NLS
equation with variable and constant coefficients, respectively. To show the influence of optical
activity on rogue wave propagation, Jacobian elliptic functions have been chosen for good
stability of the waves. One recordes from analytical results two components, left-and right-
hand intensities in the chiral optical fiber. It has been observed that the shape and amplitude
of chiral optical rogue waves change with the increase of the chiral parameter. This behavior
allows to conclude that the slightly change of the amplitude is due to the optical activity and
TWM effects. The study has been improved by using chiral CNLS equations and FWM effect
has been revealed through the exchange of energy between the four components of chiral optical
vector rogue waves. The influence of optical activity on unusual rogue waves like ABs or KM
soliton has been shown in focusing and defocusing XPM interaction cases. One notices that
the destruction of one component contributes to the perturbations that lead to modulation
instability and that the defocusing nature of XPM generates chiral optical dark rogue waves. It
has been shown that positive and negative scattering lengths can generate a potential barrier
for one component in the left-or right-hand side. Thus, one may confirm that the control and
guide of the propagation direction of chiral optical vector rogue waves either in the left-hand
or in the right-hand is made possible.
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Moreover, the derivation of both scalar and vector nonparaxial NLS equations with constant
and modulated coefficients is made to improve the description of rogue waves propagation in
optical fibers filled with chiral materials. Under the assumption of controllability and the pres-
ence of nonparaxiality, optical activity and walk-off effects, first-and second-order nonparaxial
chiral optical rogue waves were investigated by the MDT method. The nonparaxiality, TOD
and differential gain or loss terms have been revealed as the main keys to control the amplitude
of the envelope fields, SS, GVD, SPM, walk-off effect, linear birefringence and the effective
propagation distance. Such models derived in this thesis can improve the description of rogue
waves and their control in chiral optical fibers with higher-order nonlinear effects. Then, the al-
gorithm scheme namely, difference-differential equation method, was used to compute efficiently
the diffractions in the spectral domain. As outcomes, the increase or decrease of the three spe-
cific control parameters can affect the wave shape and the amplitude of each component. It has
also been shown that, among those specific control parameters, the nonparaxial coefficient has
the most influential effect whereas the two others that are differential gain or loss and walk-off
terms, are physically inactives and equivalent in the absence of nonparaxial parameter. One may
conclude that the vector rogue wave solutions based on the vector nonparaxial NLS equations
which modeled the coupling of two nonlinear waves under the assumptions of nonparaxiality,
optical activity and walk-off, contributed to better control rogue wave phenomena in optical
fibers filled with chiral materials and in a variety of complex dynamics.

Finally, one fucuses attention on the higher-order nonparaxial chiral NLS equation, to under-
stand the physical nature of the optical activity and to elucidate the chiral material properties
on rogue wave propagation in chiral optical fiber. One founds that optical fibers filled with chiral
material have a plurality of physical behaviors. Optical fibers with chiral core allow the propa-
gation of two modes with different vectors. The LCP component refers to the counter clock-wise
rotation, namely, levorotatory, and the RCP component refers to clock-wise rotation, namely,
dextrorotatory. Their structures in some cases are well localized in coordinates and for others
similar to the ABs behavior. This localization is degenerated for weak value of nonparaxial
parameter which governs both the central character of peak and rogue wave localization to
coordinates. Moreover, this weak value is also responsible to the violation of paraxial approxi-
mation. Therefore, one may control the paraxial approximation, in multiplexed systems and in
nanostructures in which this violation can occur. In addition, second-order rogue wave solutions
was claimed to be more interesting in the study of waves propagation in realistic problems in
optics. The remarkable rotational property of chiral optical fibers is observed throughout the
degeneration of lobes of butterfly structures which are converted from linear to rotational mo-
tion. This conversion is well-observed on contour plots of analytical and numerical simulations.
As additional property of chiral materials, chiral optical refractive index has the peculiarity
of being slightly higher compare to the refractive index of the cladding. This slight difference
play an undeniable role in optical propagation, in the sense that it is responsible to the total
reflection of the light through the chiral core of optical fibers. Hence, the great importance of
chiral materials. Moreover, helical structures, with given chirality have an excellent mechanical
behavior due to their remarkable rotational property. They provide the direct way to convert
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linear motion to rotational motion and vice versa. In consequence, in addition to the simultane-
ous controllability of the degeneration of waves and chiral level of materials, this thesis provides
a theoretical framework to improve, the controllable conversion of LCP and RCP waves, from
linear to rotational motion and vice versa, as well as further experimental investigation of rogue
waves propagation in chiral optical fibers. These aspects are additional features and can find
application in optics, notably in telecommunications and in many other physical systems.
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General Conclusion

Summary and Contributions

In this thesis, one has improved extended NLS models to study the generation and prop-
agation of rogue waves in optical fibers and chiral media. More attention has been focused
on understanding rogue wave phenomena to improve their controllability in Kerr and chiral
media. Investigation on rogue wave behaviors has revealed their properties in optical fibers and
potential applications in life-science and industry.

First, the historical context of rogue waves in ocean is revealed, starting from hydrodynamic
to optics, as well as advanced technology in optical communication and chiral media. Exper-
imental generation of rogue waves in optical fibers has been described and the characteristic
properties of the equipments underlined. A concordance between the analytical, numerical and
experimental rogue wave generation methods has been presented. Significant advances of rogue
wave origins and predictability, likewise description and controllability have been summarized.
The important progress of rogue wave field and their potential applications have been eluci-
dated.

Second, the integrability method names symmetry reduction method has been developed for
non integrable NLS models. The modulation instability method has been applied to determine
the stable and unstable branches and by the way the existence and non existence of rogue
wave components in chiral media. Then, the Lax pair, the mDT and DDT methods have been
presented as the key to construct the prototypes of rogue wave solutions. Forth-order Runge-
Kutta method, difference-differential equation method and fast Fourier transforms (FFTs) have
been presented as efficient numerical methods to generate usual and unusual rogue waves.

The main results of the thesis are summarized in the third chapter as follows.
Firstly, the first-and the second-order rational solutions related to rogue wave have been

presented. Direct methods such as similarity reduction and Darboux transformation have been
used to construct the rational solutions of nonparaxial NLS equation. The richness of these
methods is based on the fact that they can also be applied to higher orders (third, fourth, etc.).
Through the 2D and 3D representations, the effect of nonparaxiality on rogue wave propagation
has been revealed. It has been shown that the nonparaxiality increases rapidly the intensity of
rogue waves by increasing the length and reducing the width peak simultaneously. One denotes
that the nonparaxial rogue waves are faster than the ones obtained from the standard NLS
equation. It has been recorded that the nonparaxiality moves the higher peak of rogue waves
from the center to the periphery. The effects of the polynomial and Jacobian elliptic functions on
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rogue waves have been examined. It has been concluded that the displacement of the wave peak
from the center to the periphery is due to height velocity of the nonparaxial rogue waves. As
the nonparaxial effect increases the velocity of waves, it also penalizes the interactions between
them. These aspects are additional features and can find application in optics and in many
other physical systems.

Secondly, the derivation of the NLS-type equation in chiral optical fiber with right-and
left-hand nonlinear polarization has been done. This model has been used to describe the
propagation of optical rogue waves in chiral fiber. The symmetry reduction and the mDT have
been used to generate the rational solutions. So doing, first-and second-order chiral optical
rogue waves have been constructed through the chiral NLS equation with variable and constant
coefficients, respectively. To show the influence of optical activity on rogue wave propagation,
Jacobian elliptic functions have been chosen for good stability of the waves. One recordes from
analytical results two components, left-and right-hand intensities in chiral optical fiber. It has
been observed that the shape and the amplitude of chiral optical rogue waves change with the
increase of the chiral parameter. This behavior allows to conclude that the slightly change of
the amplitude is due to the optical activity and TWM effects. The study has been improved
by using chiral CNLS equations and the obtention of chiral optical vector rogue waves with
four components has revealed through the exchange of energy, the FWM effect. In the case of
focusing and defocusing XPM interactions, one obtains unusual rogue waves like ABs or KM
soliton. Then, the influence of optical activity on different profiles has been shown. One notices
that the destruction of one component contributes to the perturbations that lead to modulation
instability and that the defocusing nature of XPM generates chiral optical dark rogue waves. It
has been shown that positive and negative scattering lengths can generate a potential barrier
for one component in the left-or right-hand side. From this result, one may confirm that the
control and guiding of chiral optical vector rogue waves are possible, either in the left-hand or
in the right-hand side, for some specific set of parameters likewise chiral parameter.

Thirdly, the derivation of both scalar and vector nonparaxial NLS equations with constant
and modulated coefficients is made to improve the description of rogue waves propagation in
optical fibers filled with chiral materials. The models in particular, verified the assumption
of controllability on the one hand, and takes into account the parameters responsible of non-
paraxiality, optical activity and walk-off effect, on the other hand. The first-and second-order
nonparaxial chiral optical rogue waves were investigated by the MDT method. As the non-
paraxiality, TOD and differential gain or loss terms depend on the system control parameters,
it appeared that they are the main keys to control the amplitude of the envelope fields, SS, GVD,
SPM, walk-off effect, linear birefringence and the effective propagation distance. Therefore, one
may conclude that among previous models that have been studied before, the models derived in
this thesis can improve the description of rogue waves and their control in chiral optical fibers
with higher-order nonlinear effects. In these models, one denotes the influences of TOD and
differential gain or loss term. The algorithm scheme derived here, namely, difference-differential
equation method, is known in the literature as an efficient method to compute the diffractions
in the spectral domain. A plurality of numerical simulation has shown that the increase or
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decrease of the three specific control parameters can affect the wave shape and the amplitude
of each component. Among the specific control parameters, the nonparaxial coefficient has been
considered as the most influential effect whereas the two others, that are, differential gain or
loss and walk-off terms, are physically inactives. One founds that in the absence of nonparaxial
parameter, the influence of the two others are effective and equivalent. It has been noticed that
in the absence of two specific control parameters, the last one becomes the powerful influential
effect in the system. One improves reader understanding, through models under consideration
of combined effects on rogue wave propagation in optical fibers filled with chiral materials. The
necessity to take into account the parameters responsible of the simultaneous controllability
of different effects in the system has been shown. Those parameters revealed the control key
and the novel properties of nonparaxial chiral optical rogue wave solutions. For some specific
set of parameter, usual rogue waves, such as the vector Peregrine were obtained, showing the
collisions between bright and dark rogue waves. The study of combined effects has allowed to
determine the powerful influence among the effects and the nonparaxial effect was claimed to be
the most influential one. The vector rogue waves obtained from the vectorial nonparaxial NLS
equations are of special interest in the modeling of coupled nonlinear waves. Most importantly,
they are useful under the assumptions of nonparaxiality, optical activity and walk-off and have
contributed to improve the control of rogue wave phenomena in optical fibers filled with chiral
materials.

Fourthly, this thesis work was also based on the higher-order nonparaxial chiral NLS equa-
tion, to understand the physical nature of the optical activity and to elucidate the chiral material
properties and their interplay on the rogue wave propagation. One founds that optical fibers
filled with chiral material have a plurality of physical behaviors. Chiral core allows the propaga-
tion of two modes with different vectors. One denotes, the LCP component which refers to the
counter clock-wise rotation names, levorotatory and RCP component which refers to clock-wise
rotation names, dextrorotatory. Hence, the given components |ψj− (ξ, τ)| and |ψj+ (ξ, τ)| for
j = 1, 2 as LCP and RCP chiral optical rogue waves, respectively. The structures of the LCP
and RCP waves are well localized in coordinates for weak values of the parameter ν related to
the TOD. This localization is degenerated for high values of ν. Therefore, one can confirm that
the TOD governs both the central character of peak to coordinates and localization of Pere-
grine soliton. As property of chiral materials, chiral optical refractive index has the peculiarity
of being slightly higher compare to the refractive index of the cladding. This slight difference
play an undeniable role in optical propagation in the sense that it is responsible to the total
reflection of the light through the chiral core of optical fibers. Hence, the great importance of
chiral materials. Moreover, helical structures, with given chirality have an excellent mechanical
behavior due to their remarkable rotational property. They provide the direct way to convert
linear motion to rotational motion and vice versa. This behavior is observed throughout the
degeneration of lobes of butterfly structures which are converted from linear to rotational ones.
This conversion is well observed in this work on contour plots of analytical and numerical sim-
ulations. In consequence, in addition to the simultaneous controllability of the degeneration of
waves and chiral level of materials, this work provides a theoretical framework to improve, the
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controllable conversion of LCP and RCP waves, from linear to rotational and vice versa as well
as further experimental investigation of rogue waves propagation in chiral optical fibers.

Open problems and future directions

Although the interesting results obtained in this thesis, some aspects need to be recon-
sidered due to the novelty of the optical rogue waves field. From the origins to the generation
of optical rogue waves, as well as their propagation and control in Kerr and chiral materials.
Many questions remain unsolved and are now scientists preoccupations and investigations.

• Despite the evidence progress in optical rogue wave fields, the problem of controllability of
nonlinear effects on their propagation is not fully understand and need to be reconsidered.

• In view of great scientific importance of chiral molecules in life-science and pharmaceutical
industries, one may focus on chiral properties in chiral fibers to point up the impact of
chiral materials in optical communication, in medical science and biology.

• One should improve the design and fabrication of SC-PBG fibers to reduce the transmission
losses.

• Made possible the control of rogue waves-bullet in chiral optical fibers.
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APPENDICES

It should be noted that in the whole thesis, the so-called management, known here as the
variation of parameters in both scalar and vector models is taken into account, according to
the effective non homogeneity of nonlinear Kerr and chiral media. This management plays a
fundamental role according to different nonlinear stabilization mechanism that may arise in
those media. One denotes the nonlinear absorption, saturation of the nonlinearity, ionization
changes of the type of nonlinearization and splitting of the beam into filaments, that arrest
the catastrophic beam collapse. As the prediction of the collapse is a general statement for
all media with Kerr nonlinearity, which is present in all the models of this study, one should
mention that close to the point of nonlinear focusing, the radiation beam width approaches the
wavelength of light. Then, the so-called paraxial approximation, known as the slowly varying
envelope approximation (SVEA) in the propagation direction of light beams in Kerr media is
not valid anymore and may produce a catastrophic collapse of a self-focusing beam, means the
exponential increase of the amplitude to infinity. Hence, the importance of the nonparaxiality
that replaces the catastrophic focusing with a sequence of focusing and defocusing cycles.
Therefore, the attention is focused on the nonparaxiality and other nonlinear effects as well, in
the study of rogue wave propagation in optical Kerr and chiral media through the nonparaxial
NLS models of which, the nonparaxial term is the factor which arrest the collapse. The scalar
nonparaxial NLS model reduces the beam narrowing whereas the spatial variation of nonlinear
polarization is quite well more pronounced in vector nonparaxial NLS models.

APPENDIX A: DERIVATION OF THE STANDARD NONPARAX-
IAL NLS EQUATION IN OPTICAL FIBER

In this appendix, one presents de derivation of Eq. (3.1).
A nonlinear Kerr medium is characterized by the relations

D⃗ = εnE⃗,

B⃗ = µ0H⃗
(A1)

where the flux densities D⃗ and B⃗ arise in response to the electric and magnetic field E⃗ and H⃗
propagating in the chiral medium with εn = ε0+ε2

∣∣∣E⃗∣∣∣. Here ε0 and ε2 are linear and nonlinear

permittivity, respectively. µ0 is the permeability. In absence of the current density J⃗ = 0 and
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the charge density ρ = 0, the Maxwell equations are

∇⃗ · D⃗ = 0, ∇⃗ · B⃗ = 0,

∇⃗ × E⃗ = −∂B⃗
∂t
, ∇⃗ × H⃗ = ∂D⃗

∂t
,
(A2)

Substituting Eq. (A1) into Eq. (A2), one obtains the following wave equation

∇⃗2E⃗ = µ0ε0
∂2E⃗

∂t2
+ µ0ε2

∣∣∣E⃗∣∣∣ ∂2E⃗
∂t2

.(A3)

The optical field E⃗ in the z direction as the form

E⃗(r⃗, t) = ψ⃗x,z exp (−j(Kz − ω0x)) , (A4)

where ψ⃗z,x is the complex envelope of the optical field in the nonlinear Kerr medium, K the
wave number and ω0 the frequency.

After evaluation of different derivations of E⃗ in x and z directions in Eq. (A3)), one neglects
the second-order terms and suppose that the wave is propagating in z direction. This implies
that

Kx = 0, Ez = 0. (A5)

The paraxial approximation given by Eq. (A6) is not any more valid.∣∣∣∣∂2Ex∂z2

∣∣∣∣ << ∣∣∣∣2jkz ∂Ex∂z

∣∣∣∣ (A6)
Considering the nonparaxial approximation ∂2Ex

∂z2
̸= 0 the result of Eq. (3.1), after approxima-

tions, stands for

∂2Ex
∂z2

− 2jkz
∂Ex
∂z

− kz
2Ex =

(
µ0ε0 + µ0ε2|Ex|2

) [
2jω

∂Ex
∂t

− ω2Ex

]
(A7)

By neglecting the SS and dividing Eq. (A7) by −2kz one obtains for the following set of
parameters

v2 = 1
µ0ε0

, β = µ0ε2, K0 =
ω
v
, z∗ = z, Kz = K0, (A8)

the simplified form of Eq. (A7) as follows

− 1

2k0

∂2Ex
∂z2

+ j
∂Ex
∂z

+ j
1

v

∂Ex
∂t

− βω2

2k0
|Ex|2Ex = 0. (A9)

If one sets
Ex = ϕ, |Ex|2 = |ϕ|2, (A10)

Eq. (A9) yields

− 1

2k0

∂2ϕ

∂z2
+ j

∂ϕ

∂z
+ j

1

v

∂ϕ

∂t
− βω2

2k0
|ϕ|2ϕ = 0. (A11)

The Taylor series of the wave number K(ω) at the second-order and the Fourier transform of
∆ω and ∆K help to express in an approximate form, the second term of Eq. (A11) as

j
1

v

∂ϕ

∂t
= j

1

vg

∂ϕ

∂t
+

1

2
K ′′∂

2ϕ

∂t2
, (A12)
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where
K ′′ =

∂2K

∂ω2
, K ′ =

1

vg
=
∂K

∂ω
. (A13)

Then, for the following change of variable

t′ = t− 1
vg
z

z′ = z
⇒

∂
∂t

→ ∂
∂t′

∂
∂z

→ ∂
∂z′

− 1
vg

∂
∂t′

, (A14)

Eq. (A11) stands for

− 1

2k0

∂2ϕ

∂z2
+ j

∂ϕ

∂z
+

1

2

(
K ′′ − K ′2

K

)
∂2ϕ

∂t′2
− βω2

2k0
|ϕ|2ϕ = 0. (A15)

where K ′ = ∂K
∂ω

= 1
vg

is the inverse of group-velocity, K ′′ = ∂K′

∂ω
is the group-velocity dispersion

coefficient which takes the plus and minus signs (±), representing the anomalous and normal
dispersion regimes, respectively. The factor to |ϕ|2ϕ is the SPM.

The new variables, namely

q = ω0
2/3β1/3

(2K0)
1/3 ϕ, ξ = ω0

2/3β1/3

(2K0)
1/3 z

′, d = −β1/3ω0
2/3

(2k0)
4/3 ,

τ = ω0
1/3β1/6

√
K′′(2K0)

1/6 t
′, C = 1, P = 1

2

(
1− k′2

K′′k0

)
,

(A16)

allow us to express for q (ξ, τ) = ψ (z, x), Eq. (A15) in the form

dψzz + jψz + Pψxx − C|ψ|2ψ = 0. (A17)

For q = −C, Eq. (A17) gives in presence of management

d(z)ψzz + jψz + P (z)ψxx + q(z)|ψ|2ψ = 0. (A18)

APPENDIX B: DERIVATION OF THE NLS EQUATION IN CHI-
RAL OPTICAL FIBERS

In this appendix, one presents de derivation of Eq. (3.40).
Equation (3.40) is reduced in x, y and z directions, respectively, as follows

−2jKz
∂Ex

∂z
−Kz

2Ex + µ0ε0Tc
2
(
ω2Kz

2Ex + 2jKzω
2 ∂Ex

∂z
− 2jKz

2ω ∂Ex

∂t

)
= (µ0ε0 + µ0ε2

∣∣∣E⃗∣∣∣) (2jω ∂Ex

∂t
− ω2Ex

)
+ µ0σ

(
∂Ex

∂t
+ jωEx

)
+

(
2µ0ε0Tc + µ0ε2Tc

∣∣∣E⃗∣∣∣2)
×
[
ω2 ∂Ey

∂z
+ jKz

(
2jω ∂Ex

∂t
− ω2Ey

)]
+ µ0σTc

[
−jω ∂Ey

∂z
+ jKz

(
∂Ey

∂t
+ jωEy

)]
,

(B1)

−2jKz
∂Ey

∂z
−Kz

2Ey + µ0ε0Tc
2
(
ω2Kz

2Ey + 2jKzω
2 ∂Ey

∂z
− 2jKz

2ω ∂Ey

∂t

)
= (µ0ε0 + µ0ε2

∣∣∣E⃗∣∣∣)(2jω ∂Ey

∂t
− ω2Ey

)
+ µ0σ

(
∂Ey

∂t
+ jωEy

)
+ (2µ0ε0Tc + µ0ε2Tc

∣∣∣E⃗∣∣∣2)
×
[
−ω2 ∂Ex

∂z
− jKz

(
2jω ∂Ex

∂t
− ω2Ex

)]
+ µ0σTc

[
jω ∂Ex

∂z
− jKz

(
∂Ex

∂t
+ jωEx

)]
,

(B2)

[
−ω2

(
2µ0ε0Tc + µ0ε2Tc

∣∣∣E⃗∣∣∣2)+ jωµ0σTc

](
∂Ey

∂x
− ∂Ex

∂y

)
= 0. (B3)
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Equation (B3) leads to
∂Ey

∂x
= ∂Ex

∂y
= cst, Ey = Ey(z, t), Ex = Ex(z, t). (B4)

Having multiply Eq. (B2) by ±j, follows the addition of Eqs. (B1) and (B2) where one considers
the paraxial approximation∣∣∂Ex

∂t

∣∣ << |2jωEx| ,
∣∣∣∂2Ey

∂z2

∣∣∣ << |2jωEy| . (B5)

Therefore, the novel form of wave equation can be written as[
±j
[(

2µ0ε0Tc + µ0ε2Tc

∣∣∣E⃗∣∣∣2)ω2 − jωµ0σTc

]
− 2jKz + 2jKzω

2µ0ε0Tc
2

]
∂ψR,L

∂z

+[−Kz
2 + µ0ε0Tc

2ω2Kz
2 + ω2

(
µ0ε0 + µ0ε2

∣∣∣E⃗∣∣∣2)− jωµ0σ

±j
(
−jKzω

2

(
2µ0ε0Tc + µ0ε2Tc

∣∣∣E⃗∣∣∣2)−Kzωµ0σTc

)
]ψR,L

+

[
−2jKz

2ωµ0ε0Tc
2 − 2jω

(
µ0ε0 + µ0ε2

∣∣∣E⃗∣∣∣2)] ∂ψR,L

∂t
= 0,

(B6)

where ψR,L = Ex ± jEy. Then, the reference changing is

ψR = Ex + jEy ψL = Ex − jEy,

Ex =
ψR + ψL

2
Ey =

ψR − ψL
2

.
(B7)

The division of Eq. (B6) by −2Kz yields

j
(
1−K0

2Tc
2
) ∂ψR,L

∂z
∓ jK0

2Tc
Kz

∂ψR,L

∂z
+ j ωµ0ε2

Kz
|ψR,L|2 ∂ψR,L

∂t
∓ j µ0ε2ω

2Tc
2Kz

|ψR,L|2 ∂ψR,L

∂z

+j K0

Kzc

(
1 +Kz

2Tc
2
) ∂ψR,L

∂t
∓ jωµ0σTc

2
ψR,L + 1

2

(
Kz −KzK0

2Tc
2 − K0

2

Kz

)
ψR,L − µ0ε2ω2

2Kz

×|ψR,L|2ψR,L ∓ ω2

2

(
µ0ε2Tc|ψR,L|2

)
ψR,L + j ωµ0σ

2Kz
ψR,L ∓K0

2TcψR,L ∓ ωµ0σTc
2Kz

∂ψR,L

∂z
= 0,

(B8)

where
K0 =

ω
c
, µ0ε0c

2 = 1. (B9)

The dispersion relation is given by

Kz =
K0

1±K0Tc
. (B10)

For K0
2Tc

2 << 1, one gets Kz = K0. By neglecting the nonlinear diffraction, the second and
the last terms of Eq. (B8), and for the following set of parameters

v2 = 1
µ0ε0

, α = µ0σ, β = µ0ε2, K0 =
ω
v
, z∗ = z

1−K0
2Tc2

, (B11)

Eq. (B8) takes the form

j
∂ψR,L

∂z∗
+ j 1

v

∂ψR,L

∂t
+ j ωα

2K0
ψR,L ∓K0

2TcψR,L − βω2

2K0
|ψR,L|2ψR,L ∓ jωαTc

2
ψR,L

∓ω2βTc
2

|ψR,L|2ψR,L + jωβ
K0

|ψR,L|2 ∂ψR,L

∂t
= 0.

(B12)
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If one sets
ψR,L = ϕ, K = K0 = Kz, (A13)

Equation (B11) yields

j ∂ϕ
∂z∗

+ j 1
v
∂ϕ
∂t

+ j ωα
2K0

(1∓KTc)ϕ− βω2

2K0
(1∓KTc) |ϕ|2ϕ∓K2Tcϕ+ j ωβ

K0
|ϕ|2 ∂ϕ

∂t
= 0. (B14)

The Taylor series of the wave number K(ω) at the third-order and the Fourier transform of
∆ω and ∆K help to express in an approximate form, the second term of Eq. (B13) as

j
1

v

∂ϕ

∂t
= j

1

vg

∂ϕ

∂t
+

1

2
K ′′∂

2ϕ

∂t2
− j

1

6
K ′′′∂

3ϕ

∂t3
, (B15)

where
K ′′ =

∂2K

∂ω2
, K ′′′ =

∂3K

∂ω3
, K ′ =

1

vg
=
∂K

∂ω
. (B16)

Then, for the following change of variable

t′ = t− 1
vg
z∗

z′ = z∗
⇒

∂
∂t

→ ∂
∂t′

∂
∂z∗

→ ∂
∂z′

− 1
vg

∂
∂t′

, (B17)

Eq. (B14) stands for

j ∂ϕ
∂z′

+ 1
2
K ′′ ∂2ϕ

∂t′2
− j 1

6
K ′′′ ∂3ϕ

∂t′3
+ j ωα

2K0
(1∓KTc)ϕ− βω2

2K0
(1∓KTc) |ϕ|2ϕ

∓K2Tcϕ+ j ωβ
K0

|ϕ|2 ∂ϕ
∂t′

= 0.
(B18)

APPENDIX C: THE DERIVATION OF THE HOMOGENEOUS HIGHER-
ORDER NONPARAXIAL NLS IN CHIRAL OPTICAL FIBERS

One consider a model which satisfies both, the breakdown of the paraxial approximation as
well as the requirements of time-reversal symmetry and reciprocity through the Drude-Born-
Federov formalism. Under this formalism, the adequate constitutive relations for the study of
propagation of waves in chiral medium are expressed as [64, 71, 353]

D⃗ = εnE⃗ + ε0Tc∇⃗ × E⃗, B⃗ = µ0

(
H⃗ + Tc∇⃗ × H⃗

)
, (C1)

where the flux densities D⃗ and B⃗ arise in response to the electric and magnetic field E⃗ and

H⃗ propagating in the chiral medium with εn = ε0 + ε2

∣∣∣E⃗∣∣∣2. Here ε0 and ε2 are linear and
nonlinear permittivity, respectively. µ0 is the permeability and Tc the chiral parameter of the
optical fiber. In the chiral optical medium, the predicted Maxwell equations can be written as

∇⃗ · D⃗ = ρv, ∇⃗ · B⃗ = 0,

∇⃗ × E⃗ = −∂B⃗
∂t
, ∇⃗ × H⃗ = J⃗ + ∂D⃗

∂t
,

(C2)

where the current density J⃗ = σE⃗ and the charge density ρ represents the sources for the elec-
tromagnetic field. The quantity σ is the electrical conductivity and v the volume. Substituting
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Eq. (C1) into Eq. (C2), one obtains the following wave equation

∇2E⃗ + µ0εT
2 ∂2∇⃗2E⃗

∂t2
= µ0ε0

∂2E⃗
∂t2

+ µ0σ
∂E⃗
∂t

+ µ0ε2

∣∣∣E⃗∣∣∣2 ∂2E⃗∂t2
+2µ0ε0T ∇⃗ × ∂2E⃗

∂t2
+ µ0ε2T

∣∣∣E⃗∣∣∣2∇⃗ × ∂2E⃗
∂t2

+ µ0σT ∇⃗ × ∂E⃗
∂t
.
(C3)

The optical field E⃗ is represented by a right-(R) or left-hand(L) polarizations in the z direction
as

E⃗(r⃗, t) = (x̂∓ jŷ)A(r⃗, t) exp [−j(k±z − ω0t)]

= ψ⃗R,L exp [−j(k±z − ω0t)] ,
(C4)

where ψ⃗R,L is the complex envelope of the optical field in the nonlinear chiral medium, K the
wave number and ω0 the frequency.

After evaluation of different derivations of E⃗ in x, y and z directions in Eq. (C3), one
neglects all the second-order terms, except the nonparaxial one. Considering that the wave is
propagating in z direction implies

Kx = Ky = 0, Ez = 0. (C5)

Therefore, Eq. (C3) is reduced in x, y and z directions, respectively as follows(
1− µ0ε0Tc

2ω2
) [

∂2Ex

∂x2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z2

]
− 2jKz

∂Ex

∂z
−Kz

2Ex + µ0εTc
2(ω2Kz

2Ex + 2jKzω
2 ∂Ex

∂z

−2jKz
2ω ∂Ex

∂t
−Kz

2 ∂2Ex

∂t2
) =

(
µ0ε0 + µ0ε2

∣∣∣E⃗∣∣∣2)[∂2Ex

∂t2
+ 2jω ∂Ex

∂t
− ω2Ex

]
+ µ0σ

(
∂Ex

∂t
+ jωEx

)
+

(
2µ0ε0Tc + µ0ε2Tc

∣∣∣E⃗∣∣∣2)[ω2 ∂Ey

∂z
+ jKz

(
∂2Ey

∂t2
+ 2jω ∂Ey

∂t
− ω2Ey

)]
+ µ0σTc(−jω ∂Ey

∂z
+ jKz

∂Ey

∂t

−ωKzEy),

(C6)

(
1− µ0ε0Tc

2ω2
) [∂2Ey

∂x2
+ ∂2Ey

∂y2
+ ∂2Ey

∂z2

]
− 2jKz

∂Ey

∂z
−Kz

2Ey + µ0εTc
2(ω2Kz

2Ey + 2jKzω
2 ∂Ey

∂z

−2jKz
2ω ∂Ey

∂t
−Kz

2 ∂2Ey

∂t2
) =

(
µ0ε0 + µ0ε2

∣∣∣E⃗∣∣∣2)[∂2Ey

∂t2
+ 2jω ∂Ey

∂t
− ω2Ey

]
+ µ0σ

(
∂Ey

∂t
+ jωEy

)
+

(
2µ0ε0T + µ0ε2T

∣∣∣E⃗∣∣∣2) (−ω2 ∂Ex

∂z
− jKz(

∂2Ex

∂t2
+ 2jω ∂Ex

∂t
− ω2Ex)) + µ0σT (jω

∂Ex

∂z
− jKz

∂Ex

∂t

+ωKzEx),

(C7)

[
−
(
2µ0ε0Tc + µ0ε2Tc

∣∣∣E⃗∣∣∣2)ω2 + jωµ0σTc

] [
∂Ey

∂x
− ∂Ex

∂y

]
= 0. (C8)

Eq. (C8) leads to
∂Ey

∂x
= ∂Ex

∂y
= cst, Ey = Ey(z, t), Ex = Ex(z, t). (C9)

Having multiply Eq. (C7) by ±j, follows the addition of Eqs. (C6) and (C7), where one considers
the conditions given in relation (C9) and the following approximations∣∣∂Ex

∂t

∣∣ << |2jωEx| ,
∣∣∣∂2Ey

∂z2

∣∣∣ << |2jωEy| . (C10)
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Therefore, the novel form of wave equation can be written as

(1− µ0ε0Tc
2ω2)

∂2ψR,L

∂z2
+ (−2jKz + 2jKzω

2µ0εTc
2 ± j((2µ0ε0Tc + µ0ε2Tc

∣∣∣E⃗∣∣∣2)ω2 − jωµ0σTc))
∂ψR,L

∂z

+(−Kz
2 + µ0ε0Tc

2ω2Kz
2 + ω2(µ0ε0 + µ0ε2

∣∣∣E⃗∣∣∣2)− jωµ0σ ± j(−jKzω
2(2µ0ε0Tc + µ0ε2Tc

∣∣∣E⃗∣∣∣2)
−Kzωµ0σTc))ψR,L + (−2jKz

2ωµ0ε0Tc
2 − µ0σ − 2jω(µ0ε0 + µ0ε2

∣∣∣E⃗∣∣∣2)± j(−2ωKz(2µ0ε0Tc

+µ0ε2Tc

∣∣∣E⃗∣∣∣2) + jKzµ0σTc))
∂ψR,L

∂t
= 0,

(C11)

where ψR,L = Ex ± jEy. Then, the reference changing is

ψR = Ex + jEy ψL = Ex − jEy,

Ex =
ψR+ψL

2
Ey =

ψR−ψL

2
.

(C12)

The division of Eq. (C6) by −2Kz yields

−(1−µ0ε0Tc2ω2)
2Kz

∂2ψR,L

∂z2
+ j

(
1−K0

2Tc
2
) ∂ψR,L

∂z
∓ jK0

2Tc
Kz

∂ψR,L

∂z
+ j ωµ0ε2

Kz
|ψR,L|2 ∂ψR,L

∂t
∓ j µ0ε2ω

2Tc
2Kz

×|ψR,L|2 ∂ψR,L

∂z
+ j K0

Kzc

(
1 +Kz

2Tc
2
) ∂ψR,L

∂t
± jωµ0σTc

2
ψR,L + 1

2

(
Kz −KzK0

2Tc
2 − K0

2

Kz

)
ψR,L

−µ0ε2ω2

2Kz
|ψR,L|2ψR,L ∓ ω2

2

(
µ0ε2Tc|ψR,L|2

)
ψR,L + j ωµ0σ

2Kz
ψR,L ∓K0

2TcψR,L ∓ ωµ0σT
2Kz

∂ψR,L

∂z

±µ0σTc
2

∂ψR,L

∂t
± j 2K0Tc

C

∂ψR,L

∂t
+ µ0σ

2Kz

∂ψR,L

∂t
± jωµ0ε2Tc|ψR,L|2 ∂ψR,L

∂t
= 0,

(C13)

where
K0 =

ω
c
, µ0ε0c

2 = 1. (C14)

The dispersion relation is given by

Kz =
K0

1±K0Tc
. (C15)

For K0
2Tc

2 << 1, we get Kz = K0. By neglecting the nonlinear diffraction, the second and the
last terms of Eq. (C13), and for the following set of parameters

v2 = 1
µ0ε0

, α = µ0σ, β = µ0ε2, K0 =
ω
v
, z∗ = z

1−K0
2Tc2

. (C16)

Equation (C13) takes the form

− 1
2K0

∂2ψR,L

∂z∗2
+ j

∂ψR,L

∂z∗
+ j 1

v

∂ψR,L

∂t
+ j ωα

2K0
(1±K0Tc)ψR,L ∓K0

2TcψR,L − βω2

2K0
(1±K0Tc)

×|ψR,L|2ψR,L + α
2K0

(1±K0Tc)
∂ψR,L

∂t
± j2K0

2Tc
ω

∂ψR,L

∂t
+ jωβ

K0
(1±K0Tc)|ψR,L|2 ∂ψR,L

∂t
= 0.

(C17)

If one sets
ψR,L = ϕ, K = K0 = Kz. (C18)

Equation (C16) yields

− 1
2K

∂2ϕ
∂z∗2

+ j ∂ϕ
∂z∗

+ j 1
v
∂ϕ
∂t

+ j ωα
2K

(1∓KTc)ϕ− βω2

2K
(1∓KTc) |ϕ|2ϕ∓K2Tcϕ

+ α
2K

(1±KTc)
∂ϕ
∂t

± j 2K
2Tc
ω

∂ψR,L

∂t
+ j ωβ

K0
(1±KTc)|ϕ|2 ∂ϕ∂t = 0.

(C19)

The Taylor series of the wave number K(ω) at the third-order and the Fourier transform of
∆ω and ∆K help to express in an approximate form, the second term of Eq. (C18) as

j
1

v

∂ϕ

∂t
= j

1

vg

∂ϕ

∂t
+

1

2
K ′′∂

2ϕ

∂t2
− j

1

6
K ′′′∂

3ϕ

∂t3
, (C20)
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where
K ′′ =

∂2K

∂ω2
, K ′′′ =

∂3K

∂ω3
, K ′ =

1

vg
=
∂K

∂ω
. (C21)

Then, for the following change of variable

t′ = t− 1
vg
z∗

z′ = z∗,
⇒

∂
∂t

→ ∂
∂t′

∂
∂z∗

→ ∂
∂z′

− 1
vg

∂
∂t′
,

(C22)

Eq. (C19) stands for

− 1
2K

∂2ϕ
∂z′2

+ j ∂ϕ
∂z′

+ 1
2

(
K ′′ − K′2

K

)
∂2ϕ
∂t′2

− j 1
6
K ′′′ ∂3ϕ

∂t′3
+ j ωα

2K
(1±KTc)ϕ− βω2

2K
(1∓KTc) |ϕ|2ϕ

∓K2Tϕ+ α
2K

(1±KTc)
∂ϕ
∂t′

± j 2K
2Tc
ω

∂ϕ
∂t′

+ j ωβ
K
|ϕ|2 (1±KTc)

∂ϕ
∂t′

= 0,
(C23)

where K ′ = ∂K
∂ω

= 1
vg

is the inverse of group-velocity, K ′′ = ∂K′

∂ω
is the group-velocity dispersion

(GVD) coefficient which can take the plus and minus signs (±), representing the anomalous and
normal dispersion regimes, respectively. The parameter K ′′′ = ∂K′′

∂ω
is the third-order dispersion

(TOD) term. In the fourth term, the attenuation coefficient α is weighted towards the chiral
parameter Tc. The factor to |ϕ|2ϕ is the self-phase modulation (SPM) and the term K2Tcϕ

occurs as an additional correction to the chirality of the fiber. The expressions at the eighth
and ninth positions are the differential gain or loss term and the walk-off effect. The last term
has the physical sense of self-steepening (SS) and is necessary to perform the description of
spontaneous waves.

The new variables, namely

q = ω0
2/3β1/3

(2K0)
1/3 ϕ, ξ = ω0

2/3β1/3

(2K0)
1/3 z

′, d = −β1/3ω0
2/3

(2k0)
4/3 , η = αCT√

K′′ω0
1/3β1/6(2k0)

5/6 ,

τ = ω0
1/3β1/6

√
K′′(2K0)

1/6 t
′, γ = K′′′

6
β1/6ω0

1/3

(2K0)
1/6(K′′)

3/2 , CT = 1∓ TcK, Γ = ω0
1/3α

(2K0)
1/3β1/3

,

µ = CTΓ, P = 1
2

(
1− k′2

K′′k0

)
, σ3 =

k0Tc(2k0)
7/6

√
K′′ω0

4/3β1/6
, D = K2Tc(2K0)

1/3

β1/3ω0
2/3 ,

α3 =
CT (2K0)

5/6β1/6
√
K′′ω0

2/3K0
,

(C24)

allow us to express for q (ξ, τ) = ψ (ξ, τ), Eq. (C23) in the form

d∂
2ψ
∂ξ2

+ j ∂ψ
∂ξ

+ P ∂2ψ
∂τ2

− jγ ∂
3ψ
∂τ3

+ jµψ ∓Dψ − CT |ψ|2ψ + jα3|ψ|2 ∂ψ∂τ + η ∂ψ
∂τ

± jσ3
∂ψ
∂τ

= 0. (C25)

Equation (C25) is the higher-order nonparaxial chiral NLSE and can be used to describe the
propagation of the right(+) and left(-) hand polarized rogue waves in a higher-order dispersive
and nonlinear chiral optical fiber. For d = 0, P = 1

2
, Tc = 0, CT = 1, D = 0, γ = 0, µ = 0,

η = 0 and σ3 = 0, Eq. (C25) stands for the standard NLS equation.

APPENDIX D: THE PARAMETERS OF THE WALK-OFF EFFECT
σ(ξ, τ)

σ4 (ξ) = −1
3

d(ξ)2T1(ξ)ξ
2T1(ξ)ξξ

T1(ξ)
3γ(ξ)

+ 1
12

d(ξ)2T1(ξ)ξξ
2

T1(ξ)
2γ(ξ)

− 1
9

d(ξ)T1(ξ)ξ(
d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

)ξ

T1(ξ)
, (D1)
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σ3 (ξ) = −2
3

d(ξ)2T1(ξ)ξ
2T0(ξ)ξξ

T1(ξ)
3γ(ξ)

− 2
3

d(ξ)2T1(ξ)ξT0(ξ)ξT1(ξ)ξξ
T1(ξ)

3γ(ξ)
− 2

3
d(ξ)T1z

2η(ξ)

T1(ξ)
2γ(ξ)

+1
3

d(ξ)T1(ξ)ξ(
d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
)ξ

T1(ξ)
+ 1

3

dξ T1(ξ)ξξη(ξ)

γ(ξ)T1(ξ)
+ 1

3

d(ξ)2T1(ξ)ξξT0(ξ)ξξ
T1(ξ)

2γ(ξ)

+1
9

d(ξ)T0(ξ)ξ(
dξ T1(ξ)ξξ
γ(ξ)T1(ξ)

)ξ

T1(ξ)
,

(D2)

σ2 (ξ) = 2
d(ξ)T1 (ξ)ξ

2ρ1(ξ)

T1(ξ)
2 − 2

d(ξ)T1(ξ)ξρ1(ξ)ξ
T1(ξ)

− d(ξ)T1(ξ)ξξρ1(ξ)

T1(ξ)
+ 2

3

d(ξ)T0(ξ)ξξη(ξ)

γ (ξ)T1(ξ)

−4
3

d(ξ)T1(ξ)ξ
2η(ξ)

T1(ξ)
2γ(ξ)

+ 1
3
η(ξ)2

γ(ξ)
+ 1

3

d(ξ)T0(ξ)ξ(
d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ (ξ)T1(ξ)
)ξ

T1(ξ)
+ 1

3

d(ξ)2T0(ξ)ξξ
2

γ (ξ)T1(ξ)
2

+ 1
12

√
2d(ξ)T1(ξ)ξξ

ν
− 4

3

d(ξ)2T1(ξ)ξT0(ξ)ξT0(ξ)ξξ
T1(ξ)

3γ(ξ)
− 1

3

d(ξ)2T0(ξ)ξ
2T1(ξ)ξξ

T1(ξ)
3γ(ξ)

,

(D3)

σ1 (ξ) = −2 η (ξ) ρ1 (ξ)− 2
d(ξ)T1(ξ)ξρ0(ξ)ξ

T1(ξ)
− 2

d(ξ)T0(ξ)ξξρ1(ξ)

T1(ξ)
+ 1

6

√
2T1(ξ)η(ξ)

ν

−2
d(ξ)T0(ξ)ξρ1(ξ)ξ

T1(ξ)
+ 4

d(ξ)T1(ξ)ξT0(ξ)ξρ1(ξ)

T1(ξ)
2 − 2

3

d(ξ)T0(ξ)ξ
2η(ξ)

T1(ξ)
2γ(ξ)

+ 1
6

√
2d(ξ)T0(ξ)ξξ

ν

−2
3

d(ξ)2T0(ξ)ξ
2T0(ξ)ξξ

T1(ξ)
3γ(ξ)

− T1(ξ)ξ
T1(ξ)

,

(D4)

σ0 (ξ) = −12
√
2γ(ξ)T1(ξ)ρ1(ξ)

ν
− T0(ξ)ξ

T1(ξ)
+ 3 γ (ξ) ρ1 (ξ)

2 + 2
d(ξ)T0(ξ)ξ

2ρ1(ξ)

T1(ξ)
2 − 2

d(ξ)T0(ξ)ξρ0(ξ)ξ
T1(ξ)

. (D5)

APPENDIX E: THE PARAMETERS OF THE GAIN OR LOSS TERM
µ(ξ, τ)

µ3 (ξ) = −1
3

d(ξ)2T1(ξ)ξ
2T1(ξ)ξξ

T1(ξ)
3γ(ξ)

+ 1
18
d (ξ)

(
d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

)
ξξ
, (E1)

µ2 (ξ) =
1
6

η(ξ)d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

− 1
3

d(ξ)T1(ξ)ξ
2η(ξ)

T1(ξ)
2γ(ξ)

− 2
3

d(ξ)2T1(ξ)ξT0(ξ)ξT1(ξ)ξξ

T1(ξ)
3γ(ξ)

− 1
3

d(ξ)2T1(ξ)ξ
2T0(ξ)ξξ

T1(ξ)
3γ(ξ)

+1
6
d (ξ) (

d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
)ξξ,

(E2)

µ1 (ξ) = −2
3

d(ξ)T1(ξ)ξT0(ξ)ξη(ξ)

T1(ξ)
2γ(ξ)

+ 1
3

η(ξ)d(ξ)T0(ξ)ξξ
γ(ξ)T1(ξ)

+ 1
3
η(ξ)2

γ(ξ)
− 2

3

d(ξ)2T1(ξ)ξT0(ξ)ξT0(ξ)ξξ
T1(ξ)

3γ(ξ)

−1
3

d(ξ)2T0(ξ)ξ
2T1(ξ)ξξ

T1(ξ)
3γ(ξ)

+ 1
12

√
2d(ξ)T1(ξ)ξξ

ν
− d (ξ) ρ1 (ξ)ξξ ,

(E3)

µ0 (ξ) = −1
3

d(ξ)T0(ξ)ξ
2η(ξ)

γ(ξ)T1(ξ)
2 − 1

3

d(ξ)2T0(ξ)ξ
2T0(ξ)ξξ

γ(ξ)T1(ξ)
3

+ 1
12

T1(ξ)
√
2η(ξ)

ν
− η (ξ) ρ1 (ξ) +

1
12

√
2d(ξ)T0(ξ)ξξ

ν
− d (ξ) ρ0 (ξ)ξξ .

(E4)

APPENDIX F: THE PARAMETERS OF THE LINEAR BIREFRIN-
GENCE D(ξ, τ)

D6 (ξ) = −
d(ξ)2T1(ξ)ξT1(ξ)ξξ

d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ) ξ

54 γ(ξ)T1(ξ)
2 − d(ξ)3T1(ξ)ξξ

3

216 γ(ξ)2T1(ξ)
3 +

1
36

d(ξ)3T1(ξ)ξ
2T1(ξ)ξξ

2

T1(ξ)
4γ(ξ)2

, (F1)
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D5 (ξ) =
1
9

d(ξ)2T1(ξ)ξ
2T1(ξ)ξξη(ξ)

T1(ξ)
3γ(ξ)2

−
d(ξ)2T0(ξ)ξT1(ξ)ξξ(

d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

)ξ

54 γ(ξ)T1(ξ)
2

− 1
18

d(ξ)2T1(ξ)ξT1(ξ)ξξ(
d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
)ξ

γ(ξ)T1(ξ)
2 −

d(ξ)2T1(ξ)ξT0(ξ)ξξ(
d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

)ξ

54 γ(ξ)T1(ξ)
2

+ 1
18

d(ξ)3T1(ξ)ξT0(ξ)ξT1(ξ)ξξ
2

T1(ξ)
4γ(ξ)2

+ 1
9

d(ξ)3T1(ξ)ξ
2T1(ξ)ξξT0(ξ)ξξ

T1(ξ)
4γ(ξ)2

− 1
36

d(ξ)2T1(ξ)ξξ
2η(ξ)

γ(ξ)2T1(ξ)
2

− 1
27

d(ξ)T1(ξ)ξη(ξ)(
d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

)ξ

γ(ξ)T1(ξ)
− 1

36

d(ξ)3T1(ξ)ξξ
2T0(ξ)ξξ

T1(ξ)
3γ(ξ)2

,

(F2)

D4 (ξ) = −1
3

d(ξ)2T1(ξ)ξ
2T1(ξ)ξξρ1(ξ)

T1(ξ)
3γ(ξ)

+ 2
9

d(ξ)2T1(ξ)ξ
2T0(ξ)ξξη(ξ)

T1(ξ)
3γ(ξ)2

− 1
18

d(ξ)2T0(ξ)ξT1(ξ)ξξ(
d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
)ξ

γ(ξ)T1(ξ)
2 + 1

3

d(ξ)2T1(ξ)ξT1(ξ)ξξρ1(ξ)ξ

γ(ξ)T1(ξ)
2

−1
9

d(ξ)2T1(ξ)ξT0(ξ)ξξ(
d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
)ξ

γ(ξ)T1(ξ)
2 + 1

36

d(ξ)3T0(ξ)ξ
2T1(ξ)ξξ

2

T1(ξ)
4γ(ξ)2

− 1
9

d(ξ)2T1(ξ)ξξT0(ξ)ξξη(ξ)

γ(ξ)2T1(ξ)
2

+1
9

d(ξ)T1(ξ)ξρ1(ξ)(
d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

)ξ

T1(ξ)
+ 1

9

d(ξ)T1(ξ)ξ
2η(ξ)2

γ(ξ)2T1(ξ)
2 −

√
2d(ξ)2T1(ξ)ξξ

2

144 ν γ(ξ)T1(ξ)

+2
9

d(ξ)3T1(ξ)ξT0(ξ)ξT1(ξ)ξξT0(ξ)ξξ
T1(ξ)

4γ(ξ)2
+ 2

9

d(ξ)2T1(ξ)ξT0(ξ)ξT1(ξ)ξξη(ξ)

T1(ξ)
3γ(ξ)2

+1
9

d(ξ)3T1(ξ)ξ
2T0(ξ)ξξ

2

T1(ξ)
4γ(ξ)2

+ 1
12

d(ξ)2T1(ξ)ξξ
2ρ1(ξ)

γ(ξ)T1(ξ)
2 − 1

18

d(ξ)3T1(ξ)ξξT0(ξ)ξξ
2

T1(ξ)
3γ(ξ)2

− 1
18

d(ξ)T1(ξ)ξξη(ξ)
2

γ(ξ)2T1(ξ)

−1
9

d(ξ)T1(ξ)ξη(ξ)(
d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
)ξ

γ(ξ)T1(ξ)
− 1

27

d(ξ)η(ξ)T0(ξ)ξ(
d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

)ξ

γ(ξ)T1(ξ)
,

(F3)

D3 (ξ) =
2
9

d(ξ)3T1(ξ)ξT0(ξ)ξT0(ξ)ξξ
2

T1(ξ)
4γ(ξ)2

− 1
9

d(ξ)T0(ξ)ξη(ξ)(
d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
)ξ

γ(ξ)T1(ξ)

+2
9

d(ξ)T1(ξ)ξT0(ξ)ξη(ξ)
2

T1(ξ)
2γ(ξ)2

+ 1
9

d(ξ)T0(ξ)ξρ1(ξ)
d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ) ξ

T1(ξ)
− 1

9

d(ξ)2T0(ξ)ξξ
2η(ξ)

T1(ξ)
2γ(ξ)2

+ 1
6

T1(ξ)ξd(ξ)T1(ξ)ξξ

γ(ξ)T1(ξ)
2

−d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ) ξ

− 1
9

d(ξ)T0(ξ)ξξη(ξ)
2

γ(ξ)2T1(ξ)
− 1

27
η(ξ)3

γ(ξ)2
+ 1

3

d(ξ)2T0(ξ)ξT1(ξ)ξξρ1(ξ)ξ
γ(ξ)T1(ξ)

2 + 1
3

d(ξ)2T1(ξ)ξT1(ξ)ξξρ0(ξ)ξ
γ(ξ)T1(ξ)

2

+2
3

d(ξ)2T1(ξ)ξT0(ξ)ξξρ1(ξ)ξ

γ(ξ)T1(ξ)
2 −

√
2d(ξ)T1(ξ)ξξη(ξ)

648 γ(ξ)ν
− 2

3

d(ξ)T1(ξ)ξ
2η(ξ)ρ1(ξ)

γ(ξ)T1(ξ)
2 + 4

9

d(ξ)2T1(ξ)ξT0(ξ)ξT0(ξ)ξξη(ξ)

T1(ξ)
3γ(ξ)2

−2
3

d(ξ)2T1(ξ)ξT0(ξ)ξT1(ξ)ξξρ1(ξ)

T1(ξ)
3γ(ξ)

− 1
36

√
2d(ξ)2T1(ξ)ξξT0(ξ)ξξ

γ(ξ)T1(ξ)ν
+ 1

3

T1(ξ)ξd(ξ)ρ1(ξ)(
d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
)ξ

T1(ξ)

−2
3

d(ξ)2T1(ξ)ξ
2T0(ξ)ξξρ1(ξ)

T1(ξ)
3γ(ξ)

+ 1
9

d(ξ)2T0(ξ)ξ
2T1(ξ)ξξη(ξ)

T1(ξ)
3γ(ξ)2

+ 1
3

d(ξ)2T1(ξ)ξξT0(ξ)ξξρ1(ξ)

γ(ξ)T1(ξ)
2

+1
3

d(ξ)T1(ξ)ξξη(ξ)ρ1(ξ)

γ(ξ)T1(ξ)
+ 1

9

d(ξ)3T0(ξ)ξ
2T1(ξ)ξξT0(ξ)ξξ

T1(ξ)
4γ(ξ)2

+ 2
3

T1(ξ)ξd(ξ)η(ξ)ρ1(ξ)ξ
γ(ξ)T1(ξ)

−1
9

d(ξ)2T0(ξ)ξT0(ξ)ξξ(
d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
)ξ

γ(ξ)T1(ξ)
2 − 1

27

d(ξ)3T0(ξ)ξξ
3

T1(ξ)
3γ(ξ)2

− 1
18

d(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

,

(F4)
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D2 (ξ) =
1
3
η(ξ)2ρ1(ξ)

γ(ξ)
+ 1

3

d(ξ)T0(ξ)ξρ1(ξ)(
d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
)ξ

T1(ξ)

+2
3

d(ξ)T0(ξ)ξξη(ξ)ρ1(ξ)

γ(ξ)T1(ξ)
− 1

3

d(ξ)2T0(ξ)ξ
2T1(ξ)ξξρ1(ξ)

T1(ξ)
3γ(ξ)

+ 2
9

d(ξ)2T0(ξ)ξ
2T0(ξ)ξξη(ξ)

T1(ξ)
3γ(ξ)2

−1
6

d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ)
− 1

36
T1(ξ)

√
2η(ξ)2

ν γ(ξ)
+ 1

12

√
2d(ξ)T1(ξ)ξξρ1(ξ)

ν
+ 1

6

T0(ξ)ξd(ξ)T1(ξ)ξξ
γ(ξ)T1(ξ)

2

+1
3

T1(ξ)ξd(ξ)T0(ξ)ξξ
γ(ξ)T1(ξ)

2 − 1
6

d(ξ)T0(ξ)ξξ+η(ξ)T1(ξ)

γ(ξ)T1(ξ) ξ
+ 2

3

d(ξ)T1(ξ)ξη(ξ)ρ0(ξ)ξ
γ(ξ)T1(ξ)

+ 2
3

d(ξ)T0(ξ)ξη(ξ)ρ1(ξ)ξ
γ(ξ)T1(ξ)

+2
3

d(ξ)2T1(ξ)ξT0(ξ)ξξρ0(ξ)ξ
γ(ξ)T1(ξ)

2 − 1
36

√
2d(ξ)2T0(ξ)ξξ

2

ν γ(ξ)T1(ξ)
− 1

18

√
2d(ξ)T0(ξ)ξξη(ξ)

ν γ(ξ)

+1
3

d(ξ)2T0(ξ)ξT1(ξ)ξξρ0(ξ)ξ

γ(ξ)T1(ξ)
2 + 2

3

d(ξ)2T0(ξ)ξT0(ξ)ξξρ1(ξ)ξ

γ(ξ)T1(ξ)
2 + 1

3

d(ξ)2T0(ξ)ξξ
2ρ1(ξ)

γ(ξ)T1(ξ)
2 − 1

2

d(ξ)T1(ξ)ξξρ1(ξ)
2

T1(ξ)

+
d(ξ)T1(ξ)ξ

2ρ1(ξ)
2

T1(ξ)
2 + 1

3

T1(ξ)ξη(ξ)

γ(ξ)T1(ξ)
− 4

3

d(ξ)2T1(ξ)ξT0(ξ)ξT0(ξ)ξξρ1(ξ)

T1(ξ)
3γ(ξ)

−4
3

d(ξ)T1(ξ)ξT0(ξ)ξη(ξ)ρ1(ξ)

γ(ξ)T1(ξ)
2 + 1

9

d(ξ)T0(ξ)ξ
2η(ξ)2

T1(ξ)
2γ(ξ)2

− 2
d(ξ)T1(ξ)ξρ1(ξ)ρ1(ξ)ξ

T1(ξ)
+ 1

9

d(ξ)3T0(ξ)ξ
2T0(ξ)ξξ

2

T1(ξ)
4γ(ξ)2

,

(F5)

D1 (ξ) =
1
6

√
2d(ξ)T0(ξ)ξξρ1(ξ)

ν
− 2

d(ξ)T0(ξ)ξρ1(ξ)ρ1(ξ)ξ
T1(ξ)

+ 2
3

d(ξ)2T0(ξ)ξT0(ξ)ξξρ0(ξ)ξ
γ(ξ)T1(ξ)

2 − 2
3

d(ξ)2T0(ξ)ξ
2T0(ξ)ξξρ1(ξ)

T1(ξ)
3γ(ξ)

+1
6
T1(ξ)

√
2η(ξ)ρ1(ξ)
ν

− 2
d(ξ)T1(ξ)ξρ1(ξ)ρ0(ξ)ξ

T1(ξ)
+ 2

d(ξ)T1(ξ)ξT0(ξ)ξρ1(ξ)
2

T1(ξ)
2 − T1(ξ)ξρ1(ξ)

T1(ξ)
+ ρ1 (ξ)ξ

+1
3

T0(ξ)ξη(ξ)

γ(ξ)T1(ξ)
+ ρ1 (ξ)− η (ξ) ρ1 (ξ)

2 − d(ξ)T0(ξ)ξξρ1(ξ)
2

T1(ξ)
+ 1

3

d(ξ)T0(ξ)ξT0(ξ)ξξ

γ(ξ)T1(ξ)
2

+2
3

d(ξ)T0(ξ)ξη(ξ)ρ0(ξ)ξ
γ(ξ)T1(ξ)

− 2
3

d(ξ)T0(ξ)ξ
2η(ξ)ρ1(ξ)

γ(ξ)T1(ξ)
2 ,

(F6)

D0 (ξ) = −2
d(ξ)T0(ξ)ξρ1(ξ)ρ0(ξ)ξ

T1(ξ)
− 1

4

√
2γ(ξ)T1(ξ)ρ1(ξ)

2

ν
+ 1

3

d(ξ)T1(ξ)ξξ
T1(ξ)

+
d(ξ)T0(ξ)ξ

2ρ1(ξ)
2

T1(ξ)
2 − T0(ξ)ξρ1(ξ)

T1(ξ)
+ γ (ξ) ρ1 (ξ)

3 .
(F7)

APPENDIX G: THE FINITE DIFFERENCE FORMULAE FOR THE
DERIVATIVES

[
∂2u(ξ,τ)
∂ξ2

]
ξ=n∆ξ

= un+1(τ)−2un(τ)+un−1(τ)
∆ξ2

+ 0(∆ξ2),[
∂u(ξ,τ)
∂ξ

]
ξ=n∆ξ

= un+1(τ)−un−1(τ)
2∆ξ

+ 0(∆ξ2),
(G1)

[
∂2v(ξ,τ)
∂ξ2

]
ξ=n∆ξ

= vn+1(τ)−2vn(τ)+vn−1(τ)
∆ξ2

+ 0(∆ξ2),[
∂v(ξ,τ)
∂ξ

]
ξ=n∆ξ

= vn+1(τ)−vn−1(τ)
2∆ξ

+ 0(∆ξ2),
(G2)

where
un(τ) ≡ u (n∆ξ, τ)

un−1(τ) ≡ u ((n− 1)∆ξ, τ)

un+1(τ) ≡ f (un(τ), un−1(τ), vn(τ))

, (G3)

vn(τ) ≡ v (n∆ξ, τ)

vn−1(τ) ≡ v ((n− 1)∆ξ, τ)

vn+1(τ) ≡ f (vn(τ), vn−1(τ), un(τ))

. (G4)
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We consider the inhomogeneous nonparaxial nonlinear Schrödinger (NLS) equation with varying dispersion,
nonlinearity, and nonparaxiality coefficients, which governs the nonlinear wave propagation in an inhomogeneous
optical fiber system. We present the similarity and Darboux transformations and for the chosen specific set of
parameters and free functions, the first- and second-order rational solutions of the nonparaxial NLS equation are
generated. In particular, the features of rogue waves throughout polynomial and Jacobian elliptic functions are
analyzed, showing the nonparaxial effects. It is shown that the nonparaxiality increases the intensity of rogue
waves by increasing the length and reducing the width simultaneously, by the way it increases their speed and
penalizes interactions between them. These properties and the characteristic controllability of the nonparaxial
rogue waves may give another opportunity to perform experimental realizations and potential applications in
optical fibers.

DOI: 10.1103/PhysRevE.91.063201 PACS number(s): 05.45.−a, 42.65.−k, 42.25.Bs, 42.70.−a

I. INTRODUCTION

The generation of solitons in optical fibers, predicted by
Hasegawa and Tappert [1] through the balance between the
pulse broadening due to self-phase modulation and compres-
sion due to negative group-velocity dispersion (GVD), has en-
abled the generation of stable picosecond and subpicosecond
pulses in the near infrared. In a weakly nonlinear dispersive
medium, the dynamics of the pulse envelope is governed in
the paraxial approximation by the cubic nonlinear Schrödinger
(NLS) equation [1].

An important property of NLS equation solitons is that they
emerge from particular initial profiles as long as a particular
threshold condition is met. As a consequence, it is possible to
experimentally observe solitons when neither the initial pulse
amplitude nor the initial pulse shape corresponds to a pure
soliton. Therefore, verification of many of the predicted soliton
pulse characteristics was carried out in a series of experiments
by Mollenauer and co-workers [2–4].

Temporal, spatial, and spatiotemporal optical solitons can
find applications including all-optical routing, transparent
beam interconnections, and the massive integration of optical
operations in a fully three-dimensional environment. In fact,
light is self-guiding in bulk media, which have modes with nu-
merical apertures that violate the paraxial approximation. We
recall that the paraxial approximation is valid when the radius
of the beam is sufficiently large compared to the wavelength.
Nonparaxiality may arise in the miniaturization of devices and
in other configurations, such as those involving multiplexed
beams [5]. Analytical and numerical studies of nonparaxial
bright and dark solitons in optical Kerr media have been
reported [6]. In particular, Barruch et al. [6] solved numerically
the (2+1)-dimensional nonlinear Helmholtz equation for input
beams that collapse in the simpler model. They used a Kerr-

*Corresponding author: estelletemgoua@yahoo.fr
†tckofane@yahoo.com

slab material of finite length and solved the (1+1)-dimensional
nonlinear Helmholtz equation for an incoming soliton profile.

It is found that the solution inside the Kerr-slab propagates
virtually unchanged and solitonlike solutions still exist even
for such a narrow beam for which the nonparaxiality is still
moderate. Chamorra-Posada et al. [7] have investigated and
shown that the nonlinear Helmholtz equation, which can also
be taken as the NLS equation, has an exact nonparaxial soliton
solution from which the paraxial soliton is recovered in the
appropriate limit. Based on the general particlelike nature
of solitons, Fewo et al. [8] have described some physical
parameters for the pulses such as the amplitude, the chirp, the
frequency, and the pulse width. They derived the generalization
of the matrix equation using a collective variable approach,
leading to a set of second-order differential equations of motion
of the nonparaxial spatial optical solitons.

The focusing NLS equation, which describes generic
nonlinear phenomena, supports a whole hierarchy of recently
discovered Peregrine soliton or rational solutions [9,10], Ma
solitons [11], and Akhmediev breathers [12,13]. Although
solitary by nature, these rational solutions or rogue waves
are different from the usual solitons in that they are rare,
short lived, and unstable. They can emerge from a turbulent
state of random fields, while ordinary solitons are stable
waves with characteristic collision properties, commonly
appearing in a deterministic setting of nonlinear evolution
partial differential equations. Rogue waves are giant single
waves that may suddenly appear in oceans [14]. In recent years,
the idea of rogue waves has been extended far beyond oceanic
expanses. The concept has been applied to pulses emerging
from optical fibers [10,14–22] and waves in Bose-Einstein
condensates [23], in superfluids [16], in optical cavities [18],
in the atmosphere [24], and even in finance [25].

In particular, rogue wave solutions emerging from opti-
cal fibers have been found analytically for many types of
generalized NLS models such as NLS models with constant
coefficients [10,26–29] and NLS models with varying coef-
ficients [9,30,31]. Recently, this interesting phenomenon of
optical rogue waves has been verified experimentally [21,32].
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According to the controllability of rogue waves, which has
been studied before [33–38], the problem now is what waves,
which are localized in both space and time and depict a unique
event that appears from nowhere and disappears without a
trace [39], can exist in the presence of the GVD and Kerr
nonlinearity in the nonparaxial approximation.

The present paper is organized as follows. In Sec. II we
use the similarity transformation and the modified Darboux
transformation to investigate the analytical nonparaxial rogue
wave solutions. In Sec. III we focus our attention on the effect
of the nonparaxiality on the propagation of rogue waves to
solve the problem of controllability of rogue waves in the
nonparaxial approximation by selecting parameters of the
original equation. In Sec. IV a summary is given.

II. SIMILARITY TRANSFORMATION AND RATIONAL
SOLUTIONS OF THE NONPARAXIAL NONLINEAR

SCHRÖDINGER EQUATION WITH VARIABLE
COEFFICIENTS

The complex envelope of the optical field ψ(z,x) of a
continuous-wave beam liable to a linear diffraction in one
transverse dimension in isotropic Kerr media moves according
to the nonparaxial NLS equation in the form [8]

dψzz + iψz + pψxx + q|ψ |2ψ = 0, (1)

where z and x are the longitudinal and transverse coordinates,
respectively,

x = x̃/r0, z = z̃/2LDF , ψ = √
2n2/n0r0k0Ã, (2)

where r0 is the input beam radius with diffraction length
LDF = k0r

2
0 , k0 is the linear wave number, n0 is the linear index

of refraction, n2 is the Kerr coefficient, Ã(x,z) is unscaled
field assumed to be slowly varying, and d = 1

(r0k0)2 is the
nonparaxiality parameter. The parameters p and q are related
to the GVD and Kerr nonlinearity, respectively. Equation (1)
quantifies changes in the transverse profile of a light beam
with respect to a forward-propagating reference frame and can
be seen as the nonparaxial NLS equation. This equation has
been used in the literature [6,7,40,41] for fixed values of the
dimensionless parameters p and q.

In the presence of management, the optical pulse propaga-
tion in Kerr media can be described by the nonparaxial NLS
equation with variable coefficients in the form

d(z)ψzz + iψz + p(z)ψxx + q(z)|ψ |2ψ = 0. (3)

Here z is taken as the time parameter. The variable coefficients
d(z), p(z), and q(z), which are functions of the propagation
distance z, are related to the nonparaxiality, GVD, and Kerr
nonlinearity, respectively. Inspired by the previous work of
Yan and Dai [42], we use the envelope field in the form

ψ(z,x) = ρ(z)V [Z(z),X(z,x)] exp[iϕ(z,x)] (4)

to investigate the rational solutions related to nonparaxial
rogue waves, where ρ(z) is the amplitude, Z(z) the effective
propagation distance, X(z,x) the similitude variable, and
V [Z(z),X(z,x)] the complex field. The variable ϕ(z,x) is the
phase of the wave. This form of the envelope field is also known
as the similarity transformation or the symmetry reduction
method. This method, which is also based on the self-similarity

of specific partial differential equations, has been applied in
NLS equations to search for the exact and the asymptotic
self-similar solutions [43–45]. Equation (3) is not integrable
because of varying dispersion, nonlinearity, and nonparaxiality
coefficients, which govern the nonlinear wave propagation in
an inhomogeneous optical fiber system. In order to construct
exact analytical solutions of Eq. (3) we should reduce it to some
integrable differential equation: the standard NLS equation. So
in what follows we use the symmetry transformation method
to obtain integrability conditions. This kind of exact analytical
solution has more attractive properties than those of the soliton
because of its reduced interaction and smaller peak power than
that of the soliton [46] and allows a possible pedestal-free pulse
compression [47]. Notice that the similarity and the modified
Darboux transformation methods are analytical methods that
enable us to construct rational solutions related to rogue waves.

Substituting Eq. (4) into Eq. (3) gives a couple system of
partial differential equations with variable coefficients

ρzV + 2pρXxϕxVX + ρZzVZ + ρXzVX + 2ρdϕzXzVX

+pρϕxxV + ρdV ϕzz + 2dρzV ϕz + 2ρdϕzZzVZ = 0, (5)

dρzzV + 2dρzZzVZ + 2dρzXzVX + ρdZz
2VZZ

+ 2dρZzXzVZX + ρdZzzVZ + ρdXz
2VXX + dρXzzVX

− dρV ϕz
2 − ρV ϕz + pρXx

2VXX + pρXxxVx

−pρV ϕx
2 + q|ρ|2|V |2ρV = 0. (6)

According to previous works [9,30], we consider the above
symmetry (reduction) transformation or similarity transfor-
mation (4) that would reduce Eq. (3) to the standard NLS
equation

iψz + 1
2ψxx + |ψ |2ψ = 0. (7)

By connecting the solutions of Eq. (3) with those of the above
standard NLS equation, the complex field V [Z(z),X(z,x)]
should satisfy that equation in the form

i
∂V

∂Z
+ 1

2

∂2V

∂X2
+ |V |2V = 0. (8)

With V [Z(z),X(z,x)] satisfying the relation (8), we have after
the similarity reduction of Eqs. (5) and (6)

d(z)Xzz + p(z)Xxx = 0, (9)

q(z)ρ2 + Zz = 0, (10)

Zz + d(z)ϕzZz = 0, (11)
1
2Zz + p(z)Xx

2 + d(z)Xz
2 = 0, (12)

ϕz + d(z)ϕz
2 + p(z)ϕx

2 = 0, (13)

ρz + ρ(p(z)ϕxx + d(z)ϕzz) + 2d(z)ρzϕz = 0, (14)

ρzzV + 2ρzZzVZ + 2ρzXzVX + ρZz
2VZZ

+ 2ρZzXzVZX + ρZzzVZ = 0. (15)

We start the resolution of the system (9)–(15) by solving
Eq. (9).

In order to look for rational solutions, several conditions
are imposed,

Zz = − 1
2p(z)Xx

2, q(z) = 1
2p(z)ρ(z)−2Xx

2, Xx = α(z),

(16)
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which verify Eq. (10). The above parameters can generate
the constraints for the variable Z(z) and the nonlinear Kerr
coefficient q(z). More specifically, it follows that

Xx = α(z), Xxx = 0. (17)

As d(z) �= 0 and p(z) �= 0, Eq. (9) leads to the condition Xzz =
0, which implies that αzz = δzz = 0. So from relations (17) we
obtain

X(z,x) = α(z)x + δ(z), (18)

where α(z) is the inverse of the wave width and δ(z) the position
of its center of mass −δ(z)/α(z). Quantities α(z) and δ(z) are
free functions of z.

From condition (16) we obtain the effective dimensionless
propagation distance

Z(z) = −1

2

∫ z

0
p(s)α(s)2ds. (19)

Substituting Eq. (16) into Eq. (12) leads to

X2
z = −3p(z)α(z)2

4d(z)
. (20)

The relation above is true for d(z) < 0 or p(z) < 0. In this
work we choose p(z) < 0. For Zz �= 0, Eq. (11) becomes

ϕz = − 1

d(z)
. (21)

Substituting Eq. (21) into Eq. (13), we obtain the phase
expression

ϕx = 0, ϕxx = 0, ϕ(z,x) = −
∫ z

0

1

d(s)
ds + ϕ0(x), (22)

where ϕ0(x) is a constant.
From Eq. (14) we have

ρ(z) = ρ0 exp

(∫ z

0
γ (s)ds

)
, (23)

which is the amplitude of the wave, assumed to be a real
function, and where γ (s) leads to

γ (s) = d(s)ϕzz. (24)

Here ρ0 is a constant. Now we can deduce the Kerr coefficient
given by

q(z) = 1

2

p(s)α(s)2

ρ2
0 exp

(
2
∫ z

0 γ (s)ds
) . (25)

For the defined values of d(z), p(z), α(z), and δ(z), we can
give the expressions of X(z,x), Z(z), ρ(z), ϕ(z,x), and q(z).

To determine the variable V [Z(z),X(z,x)], we use a
dressing method of the modified Darboux transformation
[26,48–50]. The first order of the standard NLS equation given
by Eq. (1) was found by Peregrine [10] and the second order
was proposed by Soto-Crespo et al. [51].

According to the modified Darboux transformation, we
obtain the first and the second order of rational solutions.
If we let V [Z(z),X(z,x)] = 	[Z(z),X(z,x)], the first order
presented in Refs. [9,10] is given by

	1 = V1 =
[

1 − G1 + iZ(z)H1

1 + 2X2 + 4Z2

]
exp i{Z(z)}, (26)

where

G1 = 4, H1 = 8, D1 = 1 + 2X2 + 4Z2. (27)

This solution is known as the Peregrine soliton [10] when
we consider the correspondence Z = z and X = x

√
2. Then,

collecting the partial solutions together, we construct the first-
order rational solution related to the exact nonparaxial rogue
wave solution of Eq. (3)

ψ1 = ρ0 exp

{∫ z

0
γ (s)ds

}[
1 − 4

1 + 2iZ(z)

1 + 2X(z,x)2 + 4Z(z)2

]

× exp i{Z(z) + ϕ(z,x)}. (28)

The intensity of the first-order nonparaxial rogue wave is given
by

|ψ1|2 = ρ0
2 exp

{
2
∫ z

0
γ (s)ds

}(
(2X2 + 4Z2 − 3)

2 + 64Z2

(1 + 2X2 + 4Z2)2

)
.

(29)

This first-order rational solution is used to describe the
dynamics of rogue waves in optical fibers. We use it to show
the effect of the nonparaxiality on the propagation of rogue
waves and present the different cases in which the choice of
parameters of the original equation (3) lead to the control
of rogue waves. The second-order rogue wave presented in
Ref. [9] is given by

	2 = V2 =
[

1 + G2 + iZ(z)H2

D2

]
exp i{Z(z)}, (30)

where G2, H2, and D2 are given by the relations

G2 = 3
8 − 3

2X2 − 1
2X4 − 9Z2 − 10Z4 − 6X2Z2,

H2 = 15
4 + 3X2 − X4 − 2Z2 − 4Z4 − 4X2Z2,

D2 = 3
32 + 9

16X2 + 1
8X4 + 1

12X6 + 33
8 Z2

+ 9
2Z4 + 2

3Z6 − 3
2X2Z2 + 1

2X4Z2 + X2Z4.

(31)

According to the same correspondence of variables z and x as
for first order, this solution is the one found by Soto-Crespo
et al. [51]. Collecting the partial solutions together, we
construct the final second-order rational solution related to
the exact nonparaxial rogue wave solution of Eq. (3)

ψ2 = ρ0 exp

{∫ z

0
γ (s)ds

} [
1 + G2 + iZ(z)H2

D2

]

× exp i{Z(z) + ϕ(z,x)}. (32)

The intensity of the second-order nonparaxial rogue wave
solution is

|ψ2|2 = ρ2
0 exp

{
2
∫ z

0
γ (s)ds

}(
(D2 + G2)2 +Z2H 2

2

D2
2

)
. (33)

This second-order rational solution is more precise than the
first one. It describes the dynamics of two rogue waves
propagating in an optical fiber as well as collisions between
them. We will use it to illustrate the effect of the nonparaxiality
on rogue wave collisions.
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FIG. 1. (Color online) Wave propagation in 2D and 3D representations of the first-order rational solution for the intensity |ψ1(x,z)|2 with
d(z) = z

4 , p(z) = − z2

4 , α(z) = 1, and δ(z) = z.

III. EFFECT OF THE NONPARAXIALITY ON THE
PROPAGATION OF ROGUE WAVES IN OPTICAL FIBER

To illustrate the effect of the nonparaxiality on the prop-
agation of rogue waves related to the first- and second-order
rational solutions, we fix values of parameters ρ0 = 1. We
present managed cases, in which the choice of parameter
functions leads to the control of rogue waves.

Our goal now is to choose appropriately free functions d(z),
P (z), α(z), and δ(z) so that we can generate abundant structures
of nonparaxial rogue waves. We choose them as polynomial
functions. We noted that parameters are chosen in order to be
bounded in the intervals −5 < z < 5 and −5 < x < 5.

For the chosen coefficients and free functions

d(z) = z

4
, p(z) = −z2

4
, α(z) = 1, δ(z) = z. (34)

The wave propagations is presented in Fig. 1 in three-
dimensional (3D) [Fig. 1(a)] and 2D [Figs. 1(b) and 1(c)]
representations showing the nonparaxial effects. For the given
parameters

d(z) = 1

4
, p(z) = −z2

4
, α(z) = 1, δ(z) = z. (35)

Figure 2 depicts the dynamics of the first-order rational
solution for the intensity |ψ1(x,z)|2 in 3D [Fig. 2(a)] and
2D [Figs. 2(b) and 2(c)] representations illustrating the
nonparaxial effects on the propagation of rogue waves.

In this paper we plot the intensity of the first- and second-
order rational solutions with the help of MATLAB. We can see in
Figs. 1 and 2 that the behavior of the nonparaxial rogue waves
is more surrounded in Fig. 1 than in Fig. 2. We observe that

the space where the usual rogue waves reach their maximum
moves from the center to the periphery in Fig. 1. So the
usual symmetry of the Peregrine soliton is absent in Fig. 1
with the nonparaxial parameter d(z) taken as the polynomial
function and present in Fig. 2 with d(z) taken as a constant.
This means that the choice of nonparaxial parameter d(z),
given in relation (34), is appropriate to obtain particularities
of nonparaxial effects. The intensity profile of Fig. 1 increases
more rapidly than the ones of the usual cases in the paraxial
approximation. It follows that the nonparaxiality increases the
length and reduces the width of the wave peak simultaneously.
It is also responsible for the unusual symmetry of the Peregrine
soliton (rogue waves) in Fig. 1.

We first show the influence of polynomial functions d(z),
p(z), α(z) and δ(z) on the structure of nonparaxial rogue waves.
Second, we choose some of them now as Jacobian elliptic
functions. When k is weaker than one, the approximative
formulas of Jacobian elliptic functions [52] are given by

dn(z,k) ≈ 1 − k2 sin (z)2

2
,

cn(z,k) ≈ cos(z) − k2 sin(z)

(
z − sin(z) cos(z)

4

)
,

sn(z,k) ≈ sin(z) − k2 cos(z)

(
z − sin(z) cos(z)

4

)
.

(36)

Here we choose k = 0.6. If we set coefficients and free
functions as

d(z) = cn(z,k), p(z)= − 1
2 sn(k,z) α(z)=z, δ(z) = z,

(37)
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FIG. 2. (Color online) Wave propagation in 2D and 3D representations of the first-order rational solution for the intensity |ψ1(x,z)|2 with
d(z) = 1

4 , p(z) = − z2

4 , α(z) = 1, and δ(z) = z.

we can obtain the 3D and 2D representation profiles in
Figs. 3(a) and 3(c), respectively, showing the nonparaxial
effects on rogue waves.

Figures 3(a)–3(c) depict the behavior of nonparaxial rogue
waves with d(z) and p(z) taken as Jacobian elliptic functions.
The profiles show waves with usual symmetry along the

(a) (b)

−5 0 5
0

1
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3

4

z

|ψ
|2

(c)

FIG. 3. (Color online) Wave propagation in 2D and 3D representations of the first-order rational solution for the intensity |ψ1(x,z)|2 with
d(z) = cn(z,k), p(z) = − 1

2 sn(k,z), α(z) = z, and δ(z) = z.
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FIG. 4. (Color online) Wave propagation in 2D and 3D representations of the second-order rational solution for the intensity |ψ2(x,z)|2
with d(z) = z

4 , p(z) = − z2

4 , α(z) = 1, and δ(z) = z.
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FIG. 5. (Color online) Wave propagation in 2D and 3D representations of the second-order rational solution for the intensity |ψ2(x,z)|2
with d(z) = 1

4 , p(z) = − z2

4 , α(z) = 1, and δ(z) = z.
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FIG. 6. (Color online) Wave propagation in 2D and 3D representations of the second-order rational solution for the intensity |ψ2(x,z)|2
with d(z) = cn(z,k), p(z) = − 1

2 sn(k,z), α(z) = z, and δ(z) = z.

z direction. The intensity profiles of the nonparaxial rogue
waves given in Figs. 3(a) and 3(c) show how they are localized
in the z direction (with z taken as the time parameter). These
waves appear spontaneously and decrease rapidly as shown in
previous works [9,26,53,54].

Having completed the first order, we now study the
dynamic behavior of the nonparaxial effect on the propa-
gation of nonparaxial rogue waves related to the second-
order rational solutions. Here the parameters that were
used to plot the first-order rational solutions are also
used to obtain the intensity profiles of second order. So
from Eq. (34) the nonparaxial effects on rogue waves are
shown in 3D [Fig. 4(a)] and 2D [Figs. 4(b) and 4(c)]
representations.

It follows from Eq. (35) that Fig. 5 reveals the non-
paraxiality effect [Figs. 5(a) and 5(b)]. The intensity profiles
of Figs. 4 and 5 are remarkably similar to Figs. 1 and 2.
Nevertheless, we record a difference, particularly notable in
the number of collisions and peaks near the periphery of the
center.

In the same way, we use the Jacobian elliptic functions to
plot the profiles of second order. By using Eq. (37) we obtain
Figs. 6(a)–6(c), which show the influence of the nonparaxiality
on rogue waves.

In Fig. 6 we observe many collisions between waves. We
record again an unusual symmetry of the nonparaxial rogue
waves in Fig. 6(a). The wave peak of Fig. 6(c) splits into
two and this split is due to the diffraction effect in a lossy
medium. We note that in the presence of the nonparaxiality,

the collisions between waves are rare but significant when they
appear [see Figs. 6(a) and 6(b)].

IV. CONCLUSION

In this work we have presented the first- and the second-
order rational solutions related to the analytical rogue wave
solutions. By using one direct method known as the simi-
larity transformation and Darboux transformation, we have
constructed the final rational solutions of the nonparaxial
NLS equation by collecting partial solutions obtained from
the standard NLS equation and the ones from the similarity
reduction. This method can also be applied to the higher orders
(third, fourth, etc.). Through the 2D and 3D representations
we showed the effect of the nonparaxiality on the propagation
of rogue waves: It follows that the nonparaxiality increases
rapidly the intensity of rogue waves by increasing the length
and reducing the width peak simultaneously. We noted that
the nonparaxial rogue waves are faster than the ones obtained
from the standard NLS equation. We have recorded that the
nonparaxiality moves the higher peak of rogue waves from
the center to the periphery. We also showed the effect of the
polynomial and Jacobian elliptic functions on rogue waves.
We concluded that the displacement of the wave peak from
the center to the periphery is due to height velocity of the
nonparaxial rogue waves. As the nonparaxial effect increases
the velocity of waves, it also penalizes the interactions between
them. These aspects are additional features and can find
application in optics, notably in telecommunications, and in
many other physical systems.
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We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear
polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-
order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS
equation with variable and constant coefficients, based on the modified Darboux transformation method. For
some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results,
showing the influence of optical activity on waves. We also generate the exact solutions of the two-component
coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue
waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation
instability of the background reveals the existence of vector rogue waves and the number of stable and unstable
branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring
potential applications in optical fibers and in many other physical systems.

DOI: 10.1103/PhysRevE.93.062223

I. INTRODUCTION

Recently, propagation phenomena of solitons [1–5] and
vector solitons [6–8] in nonlinear media with natural or
induced linear optical activity [9–13] have attracted more
attention and have lead to important advances from the
fundamental and technological point of view. More recently in
optics, the study of propagation [14,15] in birefringent optical
fibers allows to introduce the concept of shape-changing soli-
tons that share energy among themselves during propagation.
So, when two optical waves copropagate inside a birefrin-
gent single-mode fiber, their states of polarization change
during propagation as a result of optically induced nonlinear
birefringence. This polarization instability manifests itself as
large changes in the output state of polarization, when the
input power or the polarization state is changed slightly [16].
Those optical activities are the consequence of intrinsic linear
birefringence [17] or circular birefringence [18] known as
natural chirality or artificial chirality. The natural chirality is
caused by the spatial dispersion of optical response either in
chiral molecules or in chiral arrangements of molecules and
the artificial chirality is induced by structural chirality, i.e., by
artificially chiral structural features in subwavelength scale.

This notion of chirality refers to the lack of bilateral
symmetry of an object and can be considered as a purely
geometric property of a medium. So, chirality is a geometrical
concept that describes the inability of an object and its mirror
image to be superimposed solely through translations and
rotations. This asymmetry of chiral molecules gives rise to
optical rotation, which is an example of circular birefringence
with the material possessing a different refractive index
for right-hand circularly polarized and left-hand circularly

*Corresponding author: estelletemgoua@yahoo.fr
†tckofane@yahoo.com

polarized light. This fact is expected to play an important
role in the potential application of the chiral media in the
microwave and optical regimes.

In fact, several nonlinear phenomena in chiral media
[9–13,18,19] have been studied over the last decade for many
applications and the principle problem in working with a
chiral medium is on the control of chirality level. After some
investigations, it has been suggested that the use of chiral
material in optical fibers may be studied with polymer optical
fibers [20,21]. But after some experimental studies, scientists
show that, because of organic nature of most chiral materials,
some of them are not indicated at the processing temperature of
silica and soft glasses; they will simply be damaged. In order to
solve this problem, some investigations on the controllability
of spontaneous waves in optical fiber have been done [22].
Among various solutions of spontaneous waves, the Peregrine
soliton [23], Akhmediev breather [24], and Kuznetsov-Ma
soliton [25] are considered as theoretical prototypes to describe
the interesting phenomenon of rogue waves.

As pointed out by many scientists, rogue waves are freak
waves, giant waves, monster waves, and killer waves, first
observed and measured scientifically at the Draupner oil
platform in the North Sea [26]. They are nonlinear single
oceanic waves of extremely large amplitude, much higher than
the average waves and are localized both in space and time
[27–29]. They appear from nowhere and disappear without
a trace and their reappearance without major shape changes
gives rise to a novel appellation of rogue waves, namely
rogons. Because of their more complicated way to be studied
in oceans, researchers extended this strange phenomenon in
optical fibers [23,30–38] for better understanding and the
cause of their enormous growth became a subject of scientific
research. The investigation on rogue waves dynamics argue
that they arise due to modulational instability [39,40] and their
occurrence has been later observed in physical systems as
optical wave guides [41], capillary waves [42], Bose-Einstein
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condensates [43–46], laser-plasma interactions [47], and in
econophysics [48].

As it is necessary to transmit pulses of the order of sub-
picosecond and femtosecond frequencies, the most adequate
models to describe rogue wave phenomenon are higher-order
nonlinear Schrödinger (NLS) equations, which take into ac-
count group-velocity dispersion (GVD), third-order dispersion
(TOD), and nonlinear effects such as self-phase modulation
(SPM), cross-phase modulation (XPM), self-steepening (SS),
self-frequency shift (SFS), and four-wave mixing (FWM).
Thus, many works have been carried out based on higher-
order NLS equations with constant coefficients [15,49] and
with varying coefficients [50]. Furthermore, rogue wave
solutions have been analytically found from coupled nonlinear
Schrödinger (CNLS) equations describing two-dimensional
waves [43]. Apart from exact solitary waves obtained from
CNLS equations in chiral optical fibers, no work has been
done in chiral optical fiber for the generation of optical rogue
waves. Motivate by the idea to generate the chiral optical rogue
waves and to control their evolution without any chiral fiber
destruction, we focus our attention on the chiral parameter to
underline the properties of chiral optical fiber and indirectly to
show the influence of optical activity on rogue waves.

The present paper is organized as follows. In Sec. II we
show how to derive two-dimensional NLS equation in chiral
optical fibers starting from Born-Fedorov equations. In Sec. III
we use the symmetry reduction and the modified Darboux
transformation to generate the analytical chiral optical rogue
wave solutions in the presence and in the absence of manage-
ment. In Sec. IV we present the influence of optical activity
on the propagation of optical rogue waves, for their possible
control in chiral media. In Sec. V we present the exact solutions
of the chiral CNLS equations with coupled space-dependence
coupling field. In Sec. VI physical properties of vector rogue
waves with mixed polarization in chiral optical fiber are given.
In Sec. VII we summarize the outcomes.

II. DERIVATION OF THE NONLINEAR SCHRÖDINGER
EQUATION IN CHIRAL OPTICAL FIBERS

The phenomenological theory based on the Beltrami-
Maxwell formalism extended to nonlinear chiral medium [10]
has given rise to new effects of great significance in chiral
applications. First observed in optical activity, chirality cor-
responds to the rotation of the polarization plane in a linear
isotropic material. In an anisotropic cubic media, we add to the
polarization P and/or to the magnetization M , an additional
term Tc proportional to �∇ × �H , which measure per units
length, the chirality. The spatial chirality effect in a medium is
characterized through the Born-Fedorov formalism, based on
the predicted Maxwell’s equations. In chiral optical fibers, the
Born-Fedorov equations are the most adequate for the study
of optical activity. As they satisfy to the edge conditions [51],
this allows us to characterize the nonlinear chiral medium by
the given equations [9,10,12]

�D = εn
�E + ε0Tc

�∇ × �E,
(1)�B = μ0( �H + Tc

�∇ × �H ),

where the flux densities �D and �B arise in response to the
electric and magnetic field �E and �H propagating in the chiral
medium with εn = ε0 + ε2| �E|. Here ε0 and ε2 are linear and
nonlinear permittivity, respectively. μ0 is the permeability and
Tc the chiral parameter of the optical fiber. In our medium, the
predicted Maxwell equations are

�∇ · �D = ρV , �∇ · �B = 0,

�∇ × �E = −∂ �B
∂t

, �∇ × �H = �J + ∂ �D
∂t

, (2)

where the current density �J = σ �E and the charge density
ρ represents the sources for the electromagnetic field. The
quantity σ is the electrical conductivity and V the volume.
Substituting Eq. (1) into Eq. (2), we obtain the following wave
equation

∇2 �E + μ0ε0Tc
2 ∂2∇2 �E

∂t2

= μ0ε0
∂2 �E
∂t2

+ μ0σ
∂ �E
∂t

+ μ0ε2| �E|∂
2 �E

∂t2

+ 2μ0ε0Tc
�∇ × ∂2 �E

∂t2
+ μ0ε2Tc| �E|2 �∇ × ∂2 �E

∂t2

+μ0σTc
�∇ × ∂ �E

∂t
. (3)

The optical field �E is represented by a right- (R) or left-hand
(L) polarization in the z direction as

�E(�r,t) = (x̂ ∓ j ŷ) �A(�r,t) exp[−j (K±z − ω0t)]

= �ψR,L exp[−j (K±z − ω0t)], (4)

where �ψR,L is the complex envelope of the optical field in
the nonlinear chiral medium, K the wave number, and ω0 the
frequency.

After evaluation of different derivations of �E in x, y, and
z directions in Eq. (3), we neglect the second-order terms and
suppose that the wave is propagating in the z direction. This
imply that

Kx = Ky = 0, Ez = 0. (5)

Considering the slowly varying envelope of the amplitude, we
can do the paraxial approximation bellow∣∣∣∣∂2Ex

∂z2

∣∣∣∣ �
∣∣∣∣2jKz

∂Ex

∂z

∣∣∣∣,
(6)∣∣∣∣∂2Ey

∂z2

∣∣∣∣ �
∣∣∣∣2jKz

∂Ey

∂z

∣∣∣∣.
The final result of Eq. (3), after approximations, stands for

(see the Appendix)

j
∂φ

∂z′ + 1

2
K ′′ ∂

2φ

∂t ′2
− j

1

6
K ′′′ ∂

3φ

∂t ′3
+ j

ωα

2K0
(1 ∓ KTc)φ

− βω2

2K0
(1 ∓ KTc)|φ|2φ ∓ K2Tcφ + j

ωβ

K0
|φ|2 ∂φ

∂t ′
= 0,

(7)
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where K ′ = ∂K
∂ω

= 1
vg

is the inverse of group velocity K ′′ =
∂K ′
∂ω

is the group-velocity dispersion coefficient, which takes
the plus and minus signs (±), representing the anomalous
and normal dispersion regimes, respectively. The parameter
K ′′′ = ∂K ′ ′

∂ω
is the TOD term. In the fourth term, the attenuation

coefficient α is weighted towards the chiral parameter Tc. The
factor to |φ|2φ is the SPM and the term K2Tcφ occurs as an
additional correction to the chirality of the fiber. The last term
has the physical sense of SS and is necessary to perform the
description of spontaneous waves.

The new variables, namely

q = ω0
2/3β1/3

(2K0)1/3 φ, ξ = ω0
2/3β1/3

(2K0)1/3 z′

τ = ω0
1/3β1/16

√
K ′′(2K0)1/6

t ′,  = ω0
1/3α

(2K0)1/3β1/3

γ = β1/6K ′′′

6K ′′
ω0

1/3√
(2K0)1/3K ′′

, C = 1 ∓ TcK

D = K2Tc(2K0)1/3

β1/3ω0
2/3

, α3 = (2K0)5/6β1/6

√
K ′′ω0

2/3K0

(8)

allow us to express Eq. (7) in the form

j
∂q

∂ξ
+ 1

2

∂2q

∂τ 2
− jγ

∂3q

∂τ 3
+ jCq ∓ Dq − C|q|2q

+jα3|q|2 ∂q

∂τ
= 0. (9)

Equation (9) is the NLS equation for a chiral optical fiber.
This generalized chiral NLS equation can be used to describe
the propagation of right-hand (+) and left-hand (−) polarized
rogue waves in a higher-order dispersive and nonlinear chiral
optical fiber. If we let α3 = 0, we obtain another form of NLS
equation for a chiral optical fiber without the SS term [10]. For
Tc = 0, C = 1, D = 0, γ = 0, and  = 0, Eq. (9) stands for
the standard NLS equation.

If we let q(ξ,τ ) = ψ(ξ,τ ), ϕ = 1
2 , and μ = C, the model

becomes

j
∂ψ

∂ξ
+ ϕ

∂2ψ

∂τ 2
− jγ

∂3ψ

∂τ 3
+ jμψ ∓ Dψ − C|ψ |2ψ

+jα3|ψ |2 ∂ψ

∂τ
= 0. (10)

We should keep in mind that the controllability condition
should be verified in Eq. (10). With the aim of taking into
account the missing condition of controllability (on higher-
order NLS models) Yan et al. [52] showed that the sum of
parameters related to the SS, that is, a2 and to the SFS, that is,
a3 should be zero: a2 + a3 = 0. In order to achieve this aim,
let us write the sum of the SS (α3) and the SFS (α4) in the
following form

j [α3(|ψ |2ψ)τ + α4ψ(|ψ |2)τ ]

= j [α3|ψ |2ψτ + (α3 + α4)ψ(|ψ |2)τ ] (11)

and let α3 + α4 = 0; it will remain another term of SS given by
jα3|ψ |2ψτ . Thus, the assumption of controllability is verified
by the model given in Eq. (10). Our main aim now is to find

the rational solutions of Eq. (10) with variable and constant
coefficients, which may be useful to control the propagation
of chiral optical rogue waves.

III. SYMMETRY REDUCTION, FIRST- AND
SECOND-ORDER RATIONAL SOLUTIONS OF THE
CHIRAL NONLINEAR SCHRÖDINGER EQUATION
WITH VARIABLE AND CONSTANT COEFFICIENTS

In the presence of management in Eq. (10), the optical pulse
propagation in chiral media can be described by the chiral NLS
equation with variable coefficients, in the form

j
∂ψ

∂ξ
+ ϕ(ξ )

∂2ψ

∂τ 2
− jγ (ξ )

∂3ψ

∂τ 3
+ jμ(ξ )ψ

∓D(ξ )ψ − C(ξ )|ψ |2ψ + jα3(ξ )|ψ |2 ∂ψ

∂τ
= 0, (12)

where τ is taken as time parameter and ξ as spatial parameter.
The variable coefficients ϕ(ξ ), γ (ξ ), μ(ξ ), D(ξ ), C(ξ ), and
α3(ξ ) are related to the GVD, TOD, the gain and loss term of
the induced optical activity, linear birefringence, SPM, and SS
coefficients, respectively.

Since Eq. (12) has varying coefficients, it becomes not inte-
grable and this strongly affects the wave propagation in chiral
optical fiber. In order to solve this problem of nonintegrability
of the model, we can either use the symmetry reduction method
using third-order propagation vector field [53] or the envelope
field in gauge form [54] to obtain some integrability conditions.
This method has been applied in NLS models to look for exact
analytical solutions and is the most adequate method for the
construction of rogue wave solutions. From this preliminary
method, varying coefficients are obtained but the complex field
is deduced from the modified Darboux transformation or from
the Lax pair method [55]. In what follows, we use the envelope
field in the form [52,56,57]

ψ(ξ,τ ) = A(ξ )V [Z(ξ ),T (ξ,τ )] exp{iρ(ξ,τ )} (13)

to construct the rational solutions related to chiral optical
rogue waves, where A(ξ ) is the amplitude, Z(ξ ) the effective
propagation distance, T (ξ,τ ) the similitude variable, and
V [Z(ξ ),T (ξ,τ )] the complex field. The variable ρ(ξ,τ ) is the
phase of the wave. This form of envelope field is also known
as the similarity transformation or the reduction method.

Substituting Eq. (8) into Eq. (13) gives a couple system of
partial differential equations with variable coefficients

−γAVT Tτττ + 3γAV Tτρτ
2 + AVT Tξ

+AVT Tτρτ − γAVT T T Tτ
3 + 3γAV ρττρτ

+AξV + μV + AVZZξ + ϕAV ρττ

+α3A
2|V |2AVT Tτ − 3γAVT T TτTττ = 0, (14)

−AV ρξ + ϕAVT T Tτ
2 + ϕAVT Tττ − ϕAV ρτ

2

+ γAV ρτττ + 3γAVT Tττρτ + 3γAVT Tτρττ

− γAV ρτ
3 + 3γAVT T Tτ

2ρτ − α3A
2|V |2AVT ρτ

∓DAV − CA2|V |2AV = 0. (15)
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In order to simplify the script of differential equations above,
we write A(ξ ) = A, Z(ξ ) = Z, T (ξ,τ ) = T , ρ(ξ,τ ) = ρ.
According to the previous works [52,57], we use the symmetry
transformation given by Eq. (13) that would reduce Eq. (12)
to the integrable Hirota equation in the form [58]

i
∂V

∂Z
= −∂2V

∂T 2
+ G|V |2V + 2

√
2iν

(
∂3V

∂T 3
+ 3|V |2 ∂V

∂T

)
.

(16)

In the case of rogue waves finding, we take G = −1. The
parameter ν is a real constant. With V [Z(ξ ),T (ξ,τ )] satisfying
the relation (16), the similarity reduction of Eqs. (14) and (15)
leads to

γ (ξ )TτTττ = 0, (17)

ϕ(ξ )Tττ + 3γ (ξ )(Tττρτ + Tτρττ ) = 0, (18)

∓D(ξ ) + ρξ + ϕ(ξ )ρτ
2 + γ (ξ )(ρτ

3 − ρτττ ) = 0, (19)

Aξ + A[ϕ(ξ )ρττ + 3γ (ξ )ρττρτ + μ(ξ )] = 0, (20)

Tξ + Tτρτ − γ (ξ )
(
Tτττ − 3Tτρτ

2
) = 0, (21)

Zξ + Tτ
2[ϕ(ξ ) + 3γ (ξ )ρτ ] = 0, (22)

γ (ξ )Tτ
3 + 2

√
2νZξ = 0, (23)

A2[C(ξ ) + α3(ξ )ρτ ] + GZξ = 0, (24)

α3(ξ )A2Tτ − 6
√

2νZξ = 0. (25)

Here, the subscripts ξ and τ denote spatial and temporal
derivatives, respectively. The resolution of the system (17)–
(25) yields for γ (ξ ) �= 0 and TτTττ = 0 to the similarity
variable

T (ξ,τ ) = T1(ξ )τ + T0(ξ ), (26)

where T1ξ
(ξ ) = 0. The substitution of Eq. (26) into Eq. (18)

tends to 3γ (ξ )Tτρττ = 0. As γ (ξ ) �= 0, T1(ξ ) �= 0, and ρττ =
0, the phase can be written as

ρ(ξ,τ ) = ρ1(ξ )τ + ρ0(ξ ), (27)

where ρ1ξ
(ξ ) = 0.

From Eq. (23), the effective propagation distance Z(ξ ) will
be

Z(ξ ) = −
√

2

4ν

∫ ξ

0
γ (s)T1(s)3ds. (28)

Equation (22) stands for

ϕ(ξ ) = −γ (ξ )

(
3ρ1(ξ ) − T1(ξ )

2
√

2ν

)
. (29)

Through Eq. (21), we arrive at

γ (ξ ) = −
(

T0ξ
(ξ ) + T1(ξ )ρ1(ξ )

3T1(ξ )ρ1
2(ξ )

)
. (30)

Relation (20) is transformed to

A(ξ ) = A0 exp

{
−

∫ ξ

0
μ(s)ds

}
, (31)

where, A0 is a constant. The result coming from Eq. (21), is
out to be

∓D(ξ ) = −
{
γ (ξ )ρ1

2(ξ )

(
2ρ1(ξ ) − T1(ξ )

2
√

2ν

)
− ρ0ξ

(ξ )

}
,

(32)
with D−(ξ ) = −D+(ξ ). Equation (25) gives the result

α3(ξ ) = −3γ (ξ )T1
2(ξ )A−2(ξ ). (33)

Through relation (24), one finds that

C(ξ ) = γ (ξ )T1
2(ξ )

(
3ρ1(ξ ) + GT1(ξ )

2
√

2ν

)
A−2(ξ ). (34)

The TOD parameter γ (ξ ) is used to control the effective
propagation distance Z(ξ ), the GVD parameter ϕ(ξ ), the
coefficient of linear birefringence D(ξ ), the SS coefficient
α3(ξ ), and the SPM nonlinearity C(ξ ). The gain and loss term
of the induce optical activity μ(ξ ) can be used to manage the
optical activity on the amplitude A(ξ ), on the SS coefficient
α3(ξ ), and on the SPM nonlinearity C(ξ ). To determine the
complex field V [Z(ξ ),T (ξ,τ )], we use the modified Darboux
transformation method [43,59–61]. The first- and second-
order rational solutions of the Hirota equation, namely by
Eq. (16), were recently found by Ankiewicz et al. [58]. They
showed how to construct the hierarchy of rational solutions
of the Hirota equation. According to the modified Darboux
transformation, the first- and second-order rational solutions
are constructed in the following paragraph.

Considering the correspondence Z(ξ ) = x, 1√
2
T (ξ,τ ) = t ,

and ν = α3 in Ref. [58], the first-order of the complex field
V [Z(ξ ),T (ξ,τ )] leads to

V1[Z(ξ ),T (ξ,τ )] =
[

1 − G1 + iH1

D1

]
exp{iZ(ξ )}, (35)

where

G1 = 4, H1 = 8Z(ξ ),

D1 = 1 + [
√

2T (ξ,τ ) + 12νZ(ξ )]2 + 4Z(ξ )2. (36)

Taking into account the above correspondence, solution (35)
is known as the Peregrine soliton [23]. Then, collecting the
partial solutions together, we construct the first-order rational
solution related to the exact chiral optical rogue wave solution
of Eq. (12)

ψ1 = A(ξ )

[
1 − G1 + iH1

D1

]
exp{iZ(ξ ) + iρ(ξ,τ )}. (37)

The intensity of the first-order chiral optical rogue wave is

|ψ1|2 = A0
2 exp

{
−2

∫ ξ

0
μ(s)ds

}

×
[

([
√

2T + 12νZ]
2 + 4Z2 − 3)

2 + 64Z2

(1 + [
√

2T + 12νZ]
2 + 4Z2)

2

]
. (38)
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This first-order rational solution is used to describe
the propagation of rogue wave in chiral optical fibers.
We use it to show the influence of optical activity
on the propagation of rogue waves and with a suit-
able choice of parameters of the original Eq. (12), we
manage the controllability of chiral optical rogue wave.

Then the second-order rational solution of the complex field
V [Z(ξ ),T (ξ,τ )] presented by Ankiewicz et al. [58] stands for

V2[Z(ξ ),T (ξ,τ )] =
[

1 + G2 + iZ(ξ )H2

D2

]
exp i{Z(ξ )},

(39)
where G2, H2 and D2 are given by the relations

G2 = −48T 4 − 1152
√

2νZT 3 − 144T 2[4Z2(36ν2 + 1) + 1] − 576
√

2νZT [12Z2(12ν2 + 1) + 7]

− 192Z4[216(6ν4 + ν2) + 5] − 864Z2(44ν2 + 1) − 36,

H2 = −96T 4 − 2304
√

2νZT 3 − 96T 2[4Z2(108ν2 + 1) − 3] − 1152
√

2νZT [4Z2(36ν2 + 1)] − 384Z4(36ν2 + 1)2

− 192Z2(180ν2 + 1) + 360,

D2 = 8T 6 + 288
√

2νZT 5 − 432Z4(624ν4 − 40ν2 − 1) + 36Z2(556ν2 + 11) + 9 + 64Z6(36ν2 + 1)3

+ 96
√

2ZT 3[12Z2(60ν2 + 1) − 1] + 12T 4[4Z2(180ν2 + 1) + 1] + 6T 2[16Z4[216ν2(30ν2 + 1) − 1]

− 24Z2(60ν2 + 1) + 9] + 72
√

2νZT [16Z4(36ν2 + 1) + 8Z2(1 − 108ν2) + 17]. (40)

According to the same correspondence of variables as for
first-order, we obtain the second-order solution found by
Akhmediev et al. [62]. Collecting the partial solutions together,
we construct the final second-order rational solution related to
the exact solution of Eq. (12)

ψ2 = A(ξ )

[
1 + G2 + iZ(ξ )H2

D2

]
exp{iZ(ξ ) + iρ(ξ,τ )}.

(41)
The intensity of the second-order chiral optical rogue wave
solution is

|ψ2|2 = A0
2 exp

{
−2

∫ ξ

0
μ(s)ds

}

×
[

(G2 + D2)2 + Z(ξ )2H2
2

D2
2

]
. (42)

This second-order rational solution is more precise than the
first one. It describes the optical activity effect on two rogue
waves propagating in a chiral optical fiber as well as collisions
between them. We use it in the next section to investigate the
features of chirality on rogue wave collisions.

Now, we turn our attention to the case of chiral NLS
equation with constant coefficients. Then, the new variables
of the first- and second-order rational solutions become

T (ξ,τ ) = T1(ξ )τ + T0(ξ ),

ρ(ξ,τ ) = ρ1(ξ )τ + ρ0(ξ ),
(43)

Z(ξ ) = −
√

2γ

4ν

∫ ξ

0
T1(s)3ds,

A(ξ ) = A0 exp{−μξ},
where, T1ξ

(ξ ) = 0, ρ1ξ
(ξ ) = 0, and μ = b3(1 ± KTc). By

taking into account the new variables above, the first- and
second-order rational solutions of the chiral NLS equation
with constant coefficients are given by Eq. (37) and Eq. (41),
respectively. With these exact solutions, we can appreciate
the influence of optical activity on rogue wave in chiral NLS
equation with constant coefficients.

After the construction of the above exact solutions, we can
choose their parameters to investigate the dynamics behavior
and the features of chiral optical rogue waves. So doing, we
alternate the sign of values in both space and time, which is
required to optimize the eventual stability of the solutions.

IV. OPTICAL ACTIVITY EFFECTS ON THE
PROPAGATION OF ROGUE WAVES

To illustrate the effect of optical activity on the propagation
of rogue waves related to the first- and second-order rational
solutions, we choose, appropriately, free functions T1(ξ ),
T0(ξ ), μ(ξ ), and γ (ξ ) to generate abundant structures of chiral
optical rogue waves. We present managed cases, in which the
choice of chiral parameter leads to the control of chiral optical
rogue waves. We note that parameters are chosen in order to be
bounded in the intervals −15 < ξ < 15 and −15 < τ < 15. In
this work, curves are plotted with the help of MATLAB. Through
Jacobian elliptic functions, the intensities of the first- and
second-order rational solutions are used to show the influence
of optical activity on the structure of chiral optical rogue waves.
Their approximative formulas are given in reference by [63]

dn(z,k) ≈ 1 − k2 sin (z)2

2
,

cn(z,k) ≈ cos(z) − k2 sin(z)

(
z − sin(z) cos(z)

4

)
,

sn(z,k) ≈ sin(z) − k2 cos(z)

(
z − sin(z) cos(z)

4

)
. (44)

In order to generate more stable chiral optical rogue waves,
we use the Jacobian elliptic functions, which are responsible
for the snaker form of waves as seen in Figs. 1, 2, and 3, where
|ψ−|2 and |ψ+|2 are chiral optical rogue waves in the left-
and right-hand side, respectively. We observe through these
figures that when the chiral parameter Tc is weak, the waves in
both hands have the same form [Figs. 1(b), 2(b), and 3(b)] and
the same amplitude [Figs. 2(b) and 3(b)]. We notice that the
increase of chiral parameter reveals a notable difference on the
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FIG. 1. First-order chiral optical rogue waves on the left-
and right-hand side with variable coefficients, where the pa-
rameters are (a) Tc = 0.5; (b) Tc = 0.1; with b1 = 0.2, K =
1, b3 = 0.1, ν = 0.6, k3 = 0.6, k4 = 0.9, T1(ξ ) = √

2b1, T0(ξ ) =
cn(ξ,k4), γ (ξ ) = k3

2sn(ξ,k3)cn(ξ,k3) in each case and μ(ξ ) =
b3(1 − KTc)sn(ξ,k4)dn(ξ,k4) for the left-hand intensity |ψ−|2 and
μ(ξ ) = b3(1 + KTc)sn(ξ,k4)dn(ξ,k4) for the right-hand intensity
|ψ+|2.

form of waves between the left- and right-hand intensities [see
Figs. 1(a), 2(a), and 3(a)]. We denote that the second-order
solutions [Figs. 2 and 3(b)] with more curvatures than the
first-order solutions [Figs. 1 and 3(a)] and this, in addition to
the coefficients with management, yields a more accurate study
of the influence of the optical activity on rogue waves. We can
conclude that the increase of the right-hand intensities and the
decrease of the left-hand intensities are slightly due to the order
of the solution and highly caused by the increase of the optical
activity [see Figs. 2 and 3]. The exchange of energy observed
here is also due to the two-wave mixing (TWM) effect. The
main difference between parameters of Figs. 1–3 depends on
the order of rational solutions through the parameters Gi , Hi ,
and Di (i = 1,2). The parameters G1, H1, and D1 given in
Eq. (36) have been used to construct the first-order rational
solution (37) while G2, H2, and D2 given in Eq. (40) have
been used to construct the second-order rational solution (41)
and where the parameters μ and γ depend on the variable ξ

in Figs. 1 and 2. In contrast, in Fig. 3, where we have also

FIG. 2. Second-order chiral optical rogue waves on the left-
and right-hand side with variable coefficients, where the pa-
rameters are (a) Tc = 0.5; (b) Tc = 0.1; with b1 = 0.2, K =
1, b3 = 0.1, ν = 0.6, k3 = 0.6, k4 = 0.9, T1(ξ ) = √

2b1, T0(ξ ) =
cn(ξ,k4), γ (ξ ) = k3

2sn(ξ,k3)cn(ξ,k3) in each case and μ(ξ ) =
b3(1 − KTc)sn(ξ,k4)dn(ξ,k4) for the left-hand intensity |ψ−|2 and
μ(ξ ) = b3(1 + KTc)sn(ξ,k4)dn(ξ,k4) for the right-hand side inten-
sity |ψ+|2.

constructed the first- and second-order rational solutions, the
parameters μ and γ are constants. In order to perform this
study, we use the chiral CNLS equations in what follows.

V. CHIRAL OPTICAL VECTOR ROGUE WAVES
IN COUPLED NLS EQUATIONS WITH COUPLED

SPACE-DEPENDENCE COUPLING FIELD

From the model obtain in Eq. (9), the coupled system of
NLS equation in chiral optical fibers with coupled space-
dependence coupling field is given by

iψ1ξ + ϕψ1ττ − iγψ1τττ + iμψ1 ∓ Dψ1 − (C1|ψ1|2
+C|ψ2|2)ψ1 + iα3|ψ1|2ψ1τ − β(ξ )ψ2 = 0,

(45)
iψ2ξ + ϕψ2ττ − iγψ2τττ + iμψ2 ∓ Dψ2 − (C|ψ1|2

+C2|ψ2|2)ψ2 + iα3|ψ2|2ψ2τ − β(ξ )ψ1 = 0,
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FIG. 3. (a) First- and (b) second-order chiral optical rogue waves
on the right- and left-hand side with constant coefficients, where
parameters are (a) Tc = 0.5; (b) Tc = 0.1; with b1 = 0.2, K = 1, b3 =
0.01, ν = 0.6, γ = 0.03, k4 = 0.9, T1(ξ ) = √

2b1, T0(ξ ) = cn(ξ,k4)
in each case and μ = b3(1 − KTc) for the left-hand intensity |ψ−|2
and μ = b3(1 + KTc) for the right-hand intensity |ψ+|2.

where the last term β(ξ ) describes the coupling between
mixed polarizations. As we consider an isotropic medium with
circular polarization and linear birefringence, the presence of
FWM becomes implicit through the reference changing [see
Appendix (A7)] whereas the SPM terms (C1|ψ1|2ψ1; C2

|ψ2|2ψ2) and XPM terms (C|ψ1|2ψ2; C|ψ2|2ψ1) can be
identified in the above model. In fact, C1 and C2 are SPM
nonlinearities (interactions) and C is the XPM nonlinearity
(interactions). The FWM in our system will be responsible for
the exchanging of energy between components.

Our study is based on the theory of determinant of the
nonlinear coefficients in the form [43]

� = C1C2 − C2, (46)

which determines the thermodynamic instability of the system.
In order to reduce the number of figures, we choose only one
value of the chiral parameter Tc = 0.5 and the case where the
SPM interactions have the same signs of the scattering length,
i.e., when C1C2 > 0 or the opposite signs.

A. Chiral optical rogue waves in the case: � = 0

1. First case: � = 0 and CC1,2 > 0

In this case, the XPM and SPM interactions are either
focusing or defocusing. For mixed polarizations of two
different kinds, β(ξ ) ≡ 0. To simplify the evaluation of this
coupled system, we deduce the compact form from the
Manakov system as follows [64]

iuξ + ϕuττ − iγ uτττ

+ iμu ∓ Du − Cu+uu + iα3u
+uτ = 0. (47)

where u = (u1
u2

) and C1 = C2 = C.
The SU(2) rotations are defined by two matrices as

R0 =
(

cos α sin α

− sin α cos α

)
,

(48)

R1 =
(

eiB(ξ ) −e−iB(ξ )

eiB(ξ ) e−iB(ξ )

)
,

where α is a constant and B(ξ ) is the real function written
down in the form B(ξ ) = − ∫

β(ξ )dξ . We defined ψ = R1R0u

and for the invariant norm, i.e., u+u = ψ+ψ , we obtain the
evolution equation

iψξ + ϕψττ − iγψτττ + iμψ ∓ Dψ − Cψ+ψψ

+ iα3ψ
+ψτ − β(ξ )σ1ψ = 0, (49)

where σj (j = 1,2,3) are the standard Pauli matrices. As we
construct the rational solution of Eq. (47), we choose it in the
form of one component chiral optical rogue wave as

u = �(ξ,τ )

(
1
0

)
, where

�(ξ,τ ) = A0√−C

[
1− 4 + i8Z(ξ )

1 + [
√

2T (ξ,τ ) + 12νZ(ξ )]
2 + 4Z(ξ )2

]

× exp{−μξ} exp{iZ(ξ ) + iρ(ξ,τ )}, (50)

which is valid for C < 0, and where the variables are

T (ξ,τ ) = T1(ξ )τ + T0(ξ ),

ρ(ξ,τ ) = ρ1(ξ )τ + ρ0(ξ ),

Z(ξ ) = −
√

2γ

4ν

∫ ξ

0
T1(s)3ds (51)

with μ = b3(1 ± KTc), T0(ξ ) = cn(ξ,k2), T1(ξ ) = dn(ξ,k1),
ρ0(ξ ) = sn(ξ,k4), and ρ1(ξ ) = cn(ξ,k3). The above solution
helps us to obtain a parametric family of chiral optical rogue
wave solutions of Eq. (49) in the form

ψ = 1√−2C
�(ξ,τ )

(
cos αeiB(ξ ) + sin αe−iB(ξ )

cos αeiB(ξ ) − sin αe−iB(ξ )

)
. (52)

The varying parameters T1(ξ ) and ρ1(ξ ) in this section,
excite complex structures which may be useful to control the
propagation of chiral optical vector rogue waves.

2. Second case: � = 0 and CC1,2 < 0

Here, the scattering lengths of the XPM and SPM interac-
tions have the same signs and this allows us to let β(ξ ) ≡ 0.
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Therefore, Eqs. (45) are reduced to

iw1ξ + ϕw1ττ − iγw1τττ + iμw1 ∓ Dw1

−C(|w1|2 − |w2|2)w1 + iα3|w1|2w1τ = 0,
(53)

iw2ξ + ϕw2ττ − iγw2τττ + iμw2 ∓ Dw2

−C(|w2|2 − |w1|2)w2 + iα3|w2|2w2τ = 0,

where w = (w1
w2

). The compact form of Eqs. (53) is given by

iwξ + ϕwττ − iγwτττ + iμw ∓ Dw

−C(w+σ3w)σ3w + iα3(w+σ3w)σ3wτ = 0. (54)

For the defined unitary matrices

P0 =
(

cosh α sinh α

− sinh α cosh α

)
,

P1 =
(

sinh α cosh α

cosh α sinh α

)
,

(55)

we generate the wave function ψ = Pjw (j = 0,1), which
solves the system

iψ1ξ + ϕψ1ττ − iγψ1τττ + iμψ1 ∓ Dψ1

− (−1)jC(|ψ1|2 − |ψ2|2)ψ1 + iα3|ψ1|2ψ1τ = 0,
(56)

iψ2ξ + ϕψ2ττ − iγψ2τττ + iμψ2 ∓ Dψ2

− (−1)jC(|ψ1|2 − |ψ2|2)ψ2 + iα3|ψ2|2ψ2τ = 0.

The use of a given value for the constant α in the unitary
matrixes can reduce the coupled systems (56) to (53) for
|w1|2 = |w2|2. This imply that the system is purely linear and
as consequence, this case can not support chiral optical vector
rogue waves of the type ψ1 ≈ ψ2.

B. Chiral optical vector rogue waves in the case: � �= 0

We start the study on the case � �= 0 with two polarized
electromagnetic waves without linear coupling. We consider
β(ξ ) ≡ 0 in the coupled systems (45). As we know the solution
of one component chiral optical rogue wave, we can deduce
an analog form for two components as follows [43]:

ψ1(ξ,τ ) = a1�(ξ,τ ),
(57)

ψ2(ξ,τ ) = a2�(ξ,τ ) exp(iδ),

where �(ξ,τ ) is given in relation (50), δ, the constant phase
mismatch, a1 and a2 are the amplitudes, which yield

a1
2 = C − C2

�
, a2

2 = C − C1

�
. (58)

Here, we let

C = ±1, C1 = d1 ± KTc, C2 = d2 ± KTc, (59)

where C and C1,2 are XPM and SPM nonlinearities and
d1,2 the arbitrary constants. Relation (58) is the condition
for the existence of the synchronized vector rogue waves.
The solution (57) obtained in two components describes the
propagation of vector rogue waves in chiral optical fibers.
We know that a rogue wave is generated by an unstable
background and in order to transform our background solution

to become unstable, we let (ψ1
(0),ψ2

(0)) = (a1,a2). By so
doing, we choose the solution of Eqs. (45) in the form of a
weakly modulated constant background [40,43]

ψj (ξ,τ ) = [aj + αj exp(iKξ − iωτ )

+βj exp(−iKξ + iωτ )]

× exp[−i(Cjaj
2 + Ca3−j

2)τ ], (60)

where aj is a constant background, αj and βj , the amplitudes
of the two components, K is the wave number and ω the
frequency. Here, we suppose that αj ,βj � aj (j = 1,2). The
substitution of solution (60) into the coupled systems (45) gives
after the linearizing with respect to αj and βj , the dispersion
relation

γ 2ω6 − γ (η1 + η2)ω5 + [η1η2 − γ (β1 + β2)]ω4

+ [β1η2 + β2η1 − γ (α1 + α2)]ω3

+ (β1β2 + η1α2 + η2α1)ω2 + (β1α2 + β2α1)ω

+α1α2 − 4a1
2a2

2C2 = 0, (61)

where the parameters are

φ12 = C1a1
2 + Ca2

2, φ22 = C2a2
2 + Ca1

2,

η1 = ϕ − 3γφ12, η2 = ϕ − 3γφ22,

β1 = φ12 + 3iγ φ12
2 − αa1

2, β2 = φ22 + 3iγ φ22
2 − αa2

2,

α1 = K + γφ12
3 − iμ ∓ D − iϕφ12

2 + 2C1a1
2

− 3αφ12a1
2 + φ12,

α2 = K + γφ22
3 − iμ ∓ D − iϕφ22

2 + 2C2a2
2

− 3αφ22a2
2 + φ22. (62)

Between the roots of the polynomial given in Eq. (61),
we should have at least one imaginary root ω to obtain
an unstable background and this can be possible under the
conditions C1,2 < 0 or � < 0. Thus, Eq. (61) is the condition
of modulational instability of the background. For some
specific set of parameters given in Figs. 4–8 captions, we
determine the stable and unstable branches of chiral optical
rogue waves and indirectly, the existence of vector rogue waves
through the dispersion relation given by Eq. (61). We analyze
all possible cases for the same and opposite signs of SPM and
XPM nonlinearities in the Table I presented in the Appendix.

VI. CHIRAL VECTOR ROGUE WAVES WITH MIXED
POLARIZATION IN CHIRAL OPTICAL FIBER

A. Chiral optical rogue waves on mixed polarization
without linear coupling

We first consider the case where the XPM and SPM
interactions are focusing, i.e., C, C1,2 < 0. Under this con-
sideration, the initial conditions given in the form of exact
solution in relation (57), induce the excitation of chiral optical
vector rogue waves in the left- and right-hand side [see
Figs. 4(a) and 4(b)]. In order to show how sensitive is the
evolution of chiral optical rogue wave, we choose another
initial conditions with slightly difference on the amplitude.
Therefore, we obtain chiral optical vector rogue waves in
each hand, where we remark a weak amplitude in the first
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FIG. 4. Chiral optical vector rogue waves of the right- and left-
hand intensity |ψ1,2(ξ,τ )|2 where the parameters are for (a) and (c)
C1 = −1.6, C2 = −1.8, � > 0, μ = b3(1 − KTc); for (b) and (d)
C1 = −0.6, C2 = −0.8, � < 0, μ = b3(1 + KTc); with K = 1, Tc =
0.5, d1 = −1.1, d2 = −1.3, α3 = 0.2, γ = 0.02, D = 0.6, k1 = 0.4,
k2 = k4 = 0.6, k3 = 0.5, b3 = 0.01, and C = −1 in each case. At
ξ = −9, the initial condition takes the form of exact solutions (50)
with δ = 0 for (a) and (b) then ψ1 = (a1

2 − 0.3)1/2
�(ξ,τ ), ψ2 =

(a1
2 + 0.3)1/2

�(ξ,τ ) for (c) and (d).

components and a significant one in the second components
[see Figs. 4(c) and 4(d)]. In this regard, vector rogue waves
most exist in Figs. 4(a) and 4(b) whereas they do not exist
in Figs. 4(c) and 4(d). This weak appearance of chiral optical
rogue waves in the first components can be understood if we
suppose that |ψ1|2 � |ψ2|2. In consequence, the function ψ1

FIG. 5. Chiral optical vector rogue waves of the right- and left-
hand intensity |ψ1,2(ξ,τ )|2 where the parameters are for (a) and (c)
C1 = −2.5, C2 = −3.0, � > 0, μ = b3(1 − KTc); for (b) and (d)
C1 = −1.5, C2 = −2.0, � < 0, μ = b3(1 + KTc); with K = 1, Tc =
0.5, d1 = −2, d2 = −2.5, α3 = 0.2, γ = 0.02, D = 0.6, k1 = 0.4,
k2 = k4 = 0.6, k3 = 0.5, and b3 = 0.01 in each case; C = −1 for (a)
and (b); C = 1 for (c) and (d). At ξ = −9, the initial condition takes
the form of exact solutions (50) with δ = 0.

on each hand can be considered as a linear wave function
localizes around the minima of the trap potential U = −|ψ2|2,
created by the second component ψ2, localized around the
maxima of the potential barrier. We can conclude that the
second components have a self-focusing character that protect
them from destructive action of the optical lattice (trapping
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FIG. 6. Nonexistence of chiral optical vector rogue waves of
the left-hand and existence of the right-hand intensity |ψ1,2(ξ,τ )|2
where the parameters are C1 = −0.6, C2 = 1.5, � < 0, and μ =
b3(1 + KTc) on the right-hand side and C1 = −1.6, C2 = 0.5, � < 0
and μ = b3(1 − KTc) on the left-hand side; with K = 1, Tc = 0.5,
d1 = −1.1, d2 = 1, α3 = 0.2, γ = 0.02, D = 0.6, k1 = 0.4, k2 =
k4 = 0.6, k3 = 0.5, C = −1, and b3 = 0.01 in each case. At ξ = −9,
the initial condition takes the form of exact solutions (50) with δ = 0.

FIG. 7. Chiral optical vector rogue waves of the right- and
left-hand intensity |ψ1,2(ξ,τ )|2 where the parameters are C1 =
C2 = 1.96, and μ = b3(1 − KTc) on the left-hand side and C1 =
C2 = −0.96 and μ = b3(1 + KTc) on the right-hand side; with
K = 1, Tc = 0.5, d1 = d2 = −1.46 α3 = 0.2, γ = 0.02, D = 0.6,
k1 = 0.4, k2 = k4 = 0.6, k3 = 0.5, b3 = 0.01, and C = 1; then ψ1 =
(−C1)−1/2�(ξ,τ ) and ψ2 = 0.02�(ξ,τ ) in each case at the origin
space ξ = −9.

FIG. 8. Existence of chiral vector rogue waves of the left-hand
and nonexistence of the right-hand intensity |ψ1,2(ξ,τ )|2 where the
parameters are C1 = 0.6, C2 = 0.8, � < 0, and μ = b3(1 − KTc)
on the left-hand side and C1 = 1.6, C2 = 1.8, � > 0 and μ =
b3(1 + KTc) on the right-hand side; with K = 1, Tc = 0.5, d1 = 1.1,
d2 = 1.3, α3 = 0.03, γ = 0.02, D = 0.6, k1 = 0.4, k2 = k4 = 0.6,
k3 = 0.5, b3 = 0.01, and C = −1 in each case. At ξ = −9, the initial
condition takes the form of exact solutions (50) with δ = 0.

potential) whereas the first components, exposed to the self-
defocusing character of the potential barriers are trapped in the
lattice. Fortunately, there would remain one component in each
side in the chiral optical fiber and the transport of information
by two components can always take place.

Now, we consider the case depicted in Fig. 5 where we com-
pare the focusing (C < 0) and the defocusing (C > 0) nature
of the XPM nonlinearity with the focusing SPM nonlinearities
C1,2 < 0. We observe in the mixed case of the defocusing
nature of the XPM and focusing SPM nonlinearities that the
amplitudes are much higher [see Figs. 5(c) and 5(d)] than the
ones observed in the unmixed case of defocusing XPM and
SPM nonlinearities [see Figs. 5(a) and 5(b)]. An interesting
phenomenon occurs on the right-hand side Fig. 5(d) and it
can be seen that the components have the same amplitude and
the second one is similar to the usual rogue waves, which are
localized both in space and time. This special aspect of chiral
optical rogue waves, that is, to send two signals through a
vector of rogue waves with the same frequency, can help in
optic communication domain.

When we choose focusing (C1 < 0) and defocusing (C2 >

0) SPM interactions with focusing XPM interactions, the
inverse situation observed in Figs. 4(c) and 4(d) occurs
in Figs. 6 where the self-focusing character of the first
component, ten times higher than the amplitude of the linear
wave function ψ2, created a trap potential U = −|ψ1|2 that
trap the second component in the lattice. Because of the
nonexistence of the left-hand chiral optical rogue waves, this
other aspect can help to guide waves in the right-hand side
only.

Now, we decide to generate a chiral optical rogue wave
in the form of one component with equal SPM interactions,
which are either defocusing C1,2 > 0 or focusing C1,2 < 0 with
defocusing XPM interactions C > 0. With slight excitation in
the second component as depicted in Fig. 7, we remark that
the amplitudes of the second components are too weak in such
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a way that we can say, they do no exist and consequently that
there is not chiral optical vector rogue waves in both left- and
right-hand side. Finally, we can confirm that the defocusing
nature of the XPM is responsible for the generation of holes or
chiral optical dark rogue waves in the second components and
to the unperturbed rogue waves or bright chiral optical rogue
waves in the first components. In summary, we can construct
a bright-dark vector of rogue waves in chiral optical fiber.

We consider now the case of defocusing interactions of
the SPM nonlinearities (C1,2 > 0) with focusing interactions
of XPM nonlinearity (C < 0) depicted in Fig. 8, where we
can also observe the nonexistence of right-hand chiral optical
rogue waves and the propagation of waves in the left-hand
side only. Through Fig. 6, we show that vector rogue waves
can be guided only in the right-hand side and through Fig. 8
that they can be guided only in the left-hand side. In summary,
we can control the propagation direction of vector rogue waves
in chiral optical fiber. The presence of several peaks in some
profiles in the text is caused by the strong instability of the
background and also due to interactions and collisions between
components. They are unusual rogue waves also known as
Akhmediev breathers or Kuznetsov-Ma soliton, which are not
localized in both space and time like usual rogue waves.

B. Chiral optical rogue waves on mixed polarization
with linear coupling

We take into account the last term of Eq. (45), β(ξ ),
which is responsible for the exchange between the two wave
components. We let N1 and N2 as the power in the first and
second components, relative to the total power in the system,
respectively, in the following form

N1 =
∫ |ψ1(τ )|2dτ∫ |�(τ )|2dτ

= −1

2C
{1 + sin(2α) cos[2B(ξ )]},

(63)

N2 =
∫ |ψ2(τ )|2dτ∫ |�(τ )|2dτ

= −1

2C
{1 − sin(2α) cos[2B(ξ )]},

where ψ1,2 are deduced from Eq. (52),C = −1, α = π
4 + nπ

2
with n being an integer. Now, we choose B(ξ ) in the form

B(ξ ) = π

4

[
1 − b

ξ − ξ0

ξ0

]
. (64)

We make a choice where the linear dependance of the phase
B(ξ ) depends on ξ . Through analytical simulation, we obtain
chiral optical vector rogue waves in the left- and right-hand
side depicted in Fig. 9. For b = 1, the first components in
both sides have the behavior of rogons, which after their
disappearance, reappear without major shape change in the
amplitude [see Figs. 9(a) and 9(b)]. We also remark that
all particles are concentrated in the second components in
the vicinity of ξ = 0. We can see fast oscillations of the
background [see Figs. 9(c) and 9(d)] for b = 15. We denote
in an equal way, the increase of the amplitude in the left-hand
and the decrease of the amplitude on the right-hand side and in
consequence, this process reveals the presence of FWM, which
is responsible for the exchange of energy between components
in the system. We show throughout Figs. 4(c) and 4(d) and
then through Fig. 6 and Figs. 7(a) and 7(b), how strong XPM
interaction can cause the nonexistence of synchronized chiral

FIG. 9. Chiral vector rogue waves of the right- and left-hand
intensity |ψ1,2(ξ,τ )|2 of Eq. (52) where the parameters are given
in Eq. (50), Eq. (51), and Eq. (64) with μ = b3(1 − KTc) on the
left-hand side and μ = b3(1 + KTc) on the right-hand side; b = 1.0
in (a) and (b) and then b = 15 in (c) and (d); with K = 1, Tc = 0.7,
C = −1, α = π/4, b3 = 0.01, γ = 0.03, k1 = 0.4, k2 = 0.6, ν =
0.6, ξ0 = −10, T0(ξ ) = cn(ξ,k2), and T1(ξ ) = dn(ξ,k1) in each case.
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vector rogue waves. Nevertheless, we observe that in these
cases such waves can exist but with weak amplitude in one
component. Then, with the matrices P0,1 defined in Eq. (55),
we arrive to the equal relation |ψ1|2 = |ψ2|2 from system (56),
which describes pure linear dispersive dynamics.

VII. CONCLUSION

In this work, we have derived the NLS-type equation
in chiral optical fiber with right- and left-hand nonlinear
polarization. The model is used to describe the propagation
of optical rogue waves in chiral fiber. We have used the
symmetry reduction and the modified Darboux transformation
to generate the rational solutions. In so doing, we have
constructed the first- and second-order chiral optical rogue
waves from the chiral NLS equation with variable and constant
coefficients, respectively. In order to show the influence of
optical activity on the propagation of rogue waves, we have
chosen Jacobian elliptic functions for good stability of the
waves. We have recorded from analytical results that in chiral
optical fiber we obtained two components, left- and right-hand
intensities. We have observed that the shape and the amplitude
of chiral optical rogue waves change with the increase of the
chiral parameter. This allows us to conclude that the slight
change of the amplitude is due to the optical activity and TWM

effects. We have performed our study by using chiral CNLS
equations and with the help of MATLAB, we have generated
the chiral optical vector rogue waves with four components
showing, through the exchange of energy, the FWM effect. In
the case of focusing and defocusing XPM interactions, we have
found unusual rogue waves such as Akhmediev breathers or
the Kuznetsov-Ma soliton. Then, we have shown the influence
of optical activity on different profiles. We have noticed that the
destruction of one component contributes to the perturbations
that lead to modulation instability and that the defocusing
nature of XPM generates chiral optical dark rogue waves.
We have also shown that positive and negative scattering
lengths can generate a potential barrier for one component
in the left- or right-hand side. Finally, we can control and
guide the propagation direction of chiral optical vector rogue
waves either in the left-hand or in the right-hand side for
some specific set of parameters, including chiral parameter.
This aspect can find applications in telecommunication and in
many other physical systems.

APPENDIX

In this Appendix, we present the derivation of Eq. (3).
Equation (3) is reduced in x, y, and z directions, respec-

tively, as follows

−2jKz

∂Ex

∂z
− Kz

2Ex + μ0ε0Tc
2

(
ω2Kz

2Ex + 2jKzω
2 ∂Ex

∂z
− 2jKz

2ω
∂Ex

∂t

)

= (μ0ε0 + μ0ε2| �E|)
(

2jω
∂Ex

∂t
− ω2Ex

)
+ μ0σ

(
∂Ex

∂t
+ jωEx

)
+ (2μ0ε0Tc + μ0ε2Tc| �E|2)

×
(

ω2 ∂Ey

∂z
+ jKz

(
2jω

∂Ex

∂t
− ω2Ey

))
+ μ0σTc

[
−jω

∂Ey

∂z
+ jKz

(
∂Ey

∂t
+ jωEy

)]
(A1)

−2jKz

∂Ey

∂z
− Kz

2Ey + μ0ε0Tc
2

(
ω2Kz

2Ey + 2jKzω
2 ∂Ey

∂z
− 2jKz

2ω
∂Ey

∂t

)

= (μ0ε0 + μ0ε2| �E|)
(

2jω
∂Ey

∂t
− ω2Ey

)
+ μ0σ

(
∂Ey

∂t
+ jωEy

)
+ (2μ0ε0Tc + μ0ε2Tc| �E|2)

×
[
−ω2 ∂Ex

∂z
− jKz

(
2jω

∂Ex

∂t
− ω2Ex

)]
+ μ0σTc

[
jω

∂Ex

∂z
− jKz

(
∂Ex

∂t
+ jωEx

)]
(A2)

[−ω2(2μ0ε0Tc + μ0ε2Tc| �E|2) + jωμ0σTc]

(
∂Ey

∂x
− ∂Ex

∂y

)
= 0. (A3)

Equation (A3) leads to

∂Ey

∂x
= ∂Ex

∂y
= cst, Ey = Ey(z,t), Ex = Ex(z,t). (A4)

Having multiplied Eq. (A2) by ±j , we do the addition of Eqs. (A1) and (A2) where we also consider the paraxial approximation∣∣∣∣∂Ex

∂t

∣∣∣∣ � |2jωEx |,
∣∣∣∣∂2Ey

∂z2

∣∣∣∣ � |2jωEy |. (A5)

Therefore, the novel form of wave equation can be written as[ ± j [(2μ0ε0Tc + μ0ε2Tc| �E|2)ω2 − jωμ0σTc] − 2jKz + 2jKzω
2μ0ε0Tc

2
]∂ψR,L

∂z
+ [−Kz

2 + μ0ε0Tc
2ω2Kz

2

+ω2(μ0ε0 + μ0ε2| �E|2) − jωμ0σ ± j (−jKzω
2(2μ0ε0Tc + μ0ε2Tc| �E|2) − Kzωμ0σTc)

]
ψR,L

+ [−2j × K2
z ωμ0ε0Tc

2 − 2jω(μ0ε0 + μ0ε2| �E|2)
]∂ψR,L

∂t
= 0, (A6)

062223-12



INFLUENCE OF OPTICAL ACTIVITY ON ROGUE WAVES . . . PHYSICAL REVIEW E 93, 062223 (2016)

TABLE I. Occurrence of modulation instability and chiral vector rogue waves for mixed cases of SPM and XPM interactions.

SPM interactions XPM interactions Unstable Branches Stable Branches Chiral vector rogue waves

C1,2 < 0
− : C > C1,2,� > 0
+ : C < C1,2,� < 0

− : 4
+ : 4

− : 2
+ : 2

− : exist

+ : not

exist

− : |C| < |C1,2|,� > 0
+ : |C| < |C1,2|,� > 0

− : 4
+ : 4

− : 2
+ : 2

− : exist

+ : exist

− : C < |C1,2|,� > 0
+ : C > |C1,2|,� < 0

− : 4
+ : 4

− : 2
+ : 2

− : not

exist

+ : not

exist

C1,2 > 0
− : C > C1,2,� < 0
+ : C < C1,2,� > 0

− : 4
+ : 3

− : 2
+ : 3

− : not

exist

+ : not

exist

− : |C| > C1,2,� < 0
+ : |C| < C1,2,� > 0

− : 4
+ : 4

− : 2
+ : 2

− : exist

+ : not

exist

− : C < −C1,2,� < 0
+ : C > −C1,2,� > 0

− : 3
+ : 3

− : 3
+ : 3

− : exist

+ : not

exist

C1 < 0,C2 > 0
− : C < C1,2,� < 0
+ : C < C1,2,� < 0

− : 5
+ : 4

− : 1
+ : 2

− : not

exist

+ : exist

where ψR,L = Ex ± jEy . Then the reference changes is out to be{
ψR = Ex + jEy

ψL = Ex − jEy

{
Ex = ψR+ψL

2
Ey = ψR−ψL

2 .
(A7)

The division of Eq. (A6) by −2Kz yields

j
(
1 − K0

2Tc
2
)∂ψR,L

∂z
∓ j

K0
2Tc

Kz

∂ψR,L

∂z
+ j

ωμ0ε2

Kz

|ψR,L|2 ∂ψR,L

∂t
∓ j

μ0ε2ω
2Tc

2Kz

|ψR,L|2 ∂ψR,L

∂z

+ j
K0

Kzc

(
1 + Kz

2Tc
2
)∂ψR,L

∂t
∓ jωμ0σTc

2
ψR,L + 1

2

(
Kz − KzK0

2Tc
2 − K0

2

Kz

)
ψR,L − μ0ε2ω

2

2Kz

× |ψR,L|2ψR,L ∓ ω2

2
(μ0ε2Tc|ψR,L|2)ψR,L + j

ωμ0σ

2Kz

ψR,L ∓ K0
2TcψR,L ∓ ωμ0σTc

2Kz

∂ψR,L

∂z
= 0, (A8)

where

K0 = ω

c
, μ0ε0c

2 = 1. (A9)

The dispersion relation is given by

Kz = K0

1 ± K0Tc

. (A10)

For K0
2Tc

2 � 1, we get Kz = K0. By neglecting the nonlinear
diffraction, the second and the last terms of Eq. (A8), and for
the following set of parameters

v2 = 1

μ0ε0
, α = μ0σ, β = μ0ε2

K0 = ω

v
, z∗ = z

1 − K0
2Tc

2 , (A11)

Eq. (A8) takes the form

j
∂ψR,L

∂z∗ + j
1

v

∂ψR,L

∂t
+ j

ωα

2K0
ψR,L ∓ K0

2TcψR,L

− βω2

2K0
|ψR,L|2ψR,L ∓ jωαTc

2
ψR,L ∓ ω2βTc

2

× |ψR,L|2ψR,L + jωβ

K0
|ψR,L|2 ∂ψR,L

∂t
= 0. (A12)

If we let

ψR,L = φ, K = K0 = Kz, (A13)

062223-13



D. D. ESTELLE TEMGOUA AND T. C. KOFANE PHYSICAL REVIEW E 93, 062223 (2016)

Eq. (A11) yields

j
∂φ

∂z∗ + j
1

v

∂φ

∂t
+ j

ωα

2K0
(1 ∓ KTc)φ

− βω2

2K0
(1 ∓ KTc)|φ|2φ ∓ K2Tcφ + j

ωβ

K0
|φ|2 ∂φ

∂t
= 0.

(A14)

The Taylor series of the wave number K(ω) at the third order
and the Fourier transform of �ω and �K help to express in
an approximate form, the second term of Eq. (A13) as

j
1

v

∂φ

∂t
= j

1

vg

∂φ

∂t
+ 1

2
K ′′ ∂

2φ

∂t2
− j

1

6
K ′′′ ∂

3φ

∂t3
, (A15)

where

K ′′ = ∂2K

∂ω2
, K ′′′ = ∂3K

∂ω3
, K ′ = 1

vg

= ∂K

∂ω
. (A16)

Then, for the following change of variable

{
t ′ = t − 1

vg
z∗

z′ = z∗ ⇒
{

∂
∂t

→ ∂
∂t ′

∂
∂z∗ → ∂

∂z′ − 1
vg

∂
∂t ′

, (A17)

Eq. (A14) stands for

j
∂φ

∂z′ + 1

2
K ′′ ∂

2φ

∂t ′2
− j

1

6
K ′′′ ∂

3φ

∂t ′3
+ j

ωα

2K0
(1 ∓ KTc)φ

− βω2

2K0
(1 ∓ KTc)|φ|2φ ∓ K2Tcφ + j

ωβ

K0
|φ|2 ∂φ

∂t ′
= 0.

(A18)

In the table below, we analyze the specific cases of SPM
and XPM interactions when they have the same and opposite
signs.
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Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation
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The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials
is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method,
the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients.
We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are
the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of
nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes
of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme
of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous
controllability of combined effects are underlined, showing their properties and their potential applications in
optical fibers and in a variety of complex dynamical systems.

DOI: 10.1103/PhysRevE.97.042205

I. INTRODUCTION

After the investigation of fundamental problems of electro-
magnetic wave interaction with chiral materials, the area of
wave propagation in chiral media has renewed attention both
from theoretical and experimental points of view [1]. Chirality,
which refers to the handedness of an object or a medium, has to
play an important role in a variety of fields, including chemistry
[2], optics [3], particle physics [4,5], and mathematics [6].
The electromagnetic wave propagation through such medium
displays two unequal characteristic wave numbers for the right-
and left-circularly polarized eigenmodes, which results in both
optical activity and circular dichrosim, as consequences of the
circular birefringence [1,7]. Significant advances have taken
place on some aspects relating to the applications of chiral
media. One can mention the wave-guiding structures filled with
chiral materials, which show many interesting features through
the integrated optic applications like directional couplers,
which can be used as optical switches for energy transfer from
one fiber to another adjacent one. In fact, chiral medium has
many potentials and the development of integrated circuitry
with chiral substrates and the multiplexing in chiral fibers are
important progress with potential applications in optics [8,9].

In recent times, much attention has been focused on under-
standing of rogue wave propagation in optical fibers filled with
chiral materials. The nature of rogue waves has been discussed

*Corresponding author: estelletemgoua@yahoo.fr
†mtchokonte@uwc.ac.za
‡tckofane@yahoo.com

in hydrodynamics [10–12] and initiated in nonlinear optics, by
the pioneering measurement of Solli et al. [13] through the
analysis of the supercontinuum generation in optical fibers,
and later in a photonic crystal fiber [14]. Their occurrences
have been later observed in optical cavities [15], optical wave
guides [16], Bose-Einstein condensates [17–19], laser-plasma
interactions [20], econophysics [21], and even in finance [22].

The concept of rogue waves which refers to rogons has been
applied to pulses emerging from optical fibers, and both numer-
ical simulations and experiments show that the probability of
their generations increases with the increase of the initial noise
level responsible for the modulation instability (MI) [23]. It is
worth noting that the MI that leads to their generation evolves
two distinct directions with opposite sense. On the one hand,
it deals with the undesirable effects like the non-return-to-zero
code in optical communication, the drastic enhancement of MI
gain in the WDM (wavelength-division multiplexing) systems
which sets the limitation of the bandwidth window of the
communication system, MI lasers, and the new frequency
generations of ultrashort pulses in optical systems. On the
other hand, a suitable manipulation of MI has also found
important applications in optical amplification of weak signal,
dispersion management, optical switching, and the production
of ultrashort pulses.

Despite multiple observations in many other fields, the
origin and the predictability of rogons remains uncertain [24],
as does the kind of MI that leads to rogue wave generation
[25,26]. In fact, in optical communication systems [27–29],
many works have been done with the objective of reducing
the disastrous effects caused by MI. Important progress has
been made very recently by Baronio et al. [30], who showed
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that the MI is a necessary but not a sufficient condition for the
existence of rogue waves. Through their results, they confirmed
that rogue waves can exist if and only if the MI gain band
also contains the zero-frequency perturbation as a limiting case
known as baseband MI.

In the context of adequate model, the focusing nonlinear
Schrödinger (NLS) equation has played an important role of
universal model for rogue waves description in both optics
[31] and hydrodynamics [32] and, later on, in many physical
systems [33,34]. Therefore, the nonparaxial NLS equation
model was used in the literature by Baruch et al. [35]
and Chamoro-Posada et al. [36]. Moreover, the development
and testing of two alternative nonparaxial beam propagation
methods investigated by Chamoro-Posada et al. [37] have
provided the foundations upon which further investigations as
the modeling of numerous higher-order effects and different
physical geometries can now be undertaken with much greater
confidence. Therefore, the difference-differential approach
that is used in this work is flexible in the accommodation of
additional effects. Furthermore, the same model has been used
in the literature by many authors [38,39].

Then after many years, scientists [30,40] recognized that
describing complex systems with the standard NLS equation
is oversimplifying the nonlinear phenomena that can occur
in those systems. As a consequence, this problem pushes
researchers [41,42] to turn to higher-order NLS equations.
Moreover, it was pointed out that the vector NLS equations de-
scribe rogue waves with higher accuracy than the scalar models
[43–45]. Under this assumption, the existence of vector rogue
waves in the defocusing regime was a crucial progress in the
explanation of rogue waves in multicomponent systems [30].

Among different models that have been studied before, no
report to the best of our knowledge is adequate to perform the
description of the generation and the propagation of nonparax-
ial rogue waves in optical fibers filled with chiral materials.
As we are working under the assumption of high intensity
and beam narrowness, we investigated both scalar and vector
models, which can be used efficiently to describe simultaneous
effects of nonparaxiality, optical activity, and walk-off on
rogue waves propagating in optical fibers, filled with chiral
materials. As physical phenomena require modeling waves
with two or more components to account for different modes,
frequencies, or polarizations [7,43,46], it is also necessary to
use the vector NLS equations, which allow energy transfer
between components and which potentially yields rich and
significant new families of vector rogue wave solutions.

As methodology of resolution of the higher-order nonparax-
ial chiral NLS equations derived in Appendix A, we use both
similitude reduction and modified Darboux transformation
(MDT) methods [47–49] to find the analytical solutions of
the scalar model, and both difference-differential equation
method and Darboux dressing transformation (DDT) methods
[44,50–54] to find the numerical solutions of the vector
model. Indeed, the properties of simultaneous controllability of
nonparaxiality, optical activity, and walk-off effects on rogue
waves are underlined.

The paper is organized as follows: In Sec. II we find under
the boundedness condition the nonparaxial chiral optical rogue
waves with modulated coefficients via the MDT method. In
Sec. III we investigate the dynamical behavior and features of

nonparaxial chiral optical rogue waves through their specific
control parameters. In Sec. IV we analyze the influence of
nonparaxiality, optical activity, and walk-off on the vector
nonparaxial chiral NLS equations with constant coefficients.
In Sec. V we present the influence of combined effects through
the vector nonparaxial chiral NLS equations with modulated
coefficients. In Sec. VI we summarize the outcomes.

II. SIMILARITY REDUCTION, FIRST- AND
SECOND-ORDER NONPARAXIAL CHIRAL OPTICAL
ROGUE WAVES WITH MODULATED COEFFICIENTS

To describe the optical rogue wave propagation in chiral
media, we deduce from Eq. (A25), derived in Appendix A, the
nonparaxial chiral NLS equation with modulated coefficients,
in the form

d(ξ )
∂2ψ

∂ξ 2
+ j

∂ψ

∂ξ
+ P (ξ,τ )

∂2ψ

∂τ 2
− jγ (ξ )

∂3ψ

∂τ 3
+ jμ(ξ,τ )ψ

∓D(ξ,τ )ψ − C(ξ,τ )|ψ |2ψ + jα3(ξ )|ψ |2 ∂ψ

∂τ
+ η(ξ )

∂ψ

∂τ

±jσ3(ξ,τ )
∂ψ

∂τ
= 0, (1)

where ξ is the propagation distance, and τ is the retarded
time. The subscripts ξ and τ stand for partial differentiation.
The variable coefficients P (ξ,τ ), μ(ξ,τ ),D(ξ,τ ), C(ξ,τ ), and
σ3(ξ,τ ) are related to the space- and time-modulated group-
velocity dispersion (GVD), gain or loss term of the induced
optical activity, linear birefringence, self-phase modulation
(SPM), and linear group velocity or walk-off. Parameters
d(ξ ), γ (ξ ), α3(ξ ), and η(ξ ) are related to the space-modulated
nonparaxial parameter, TOD (third-order dispersion), SS (self-
steepening), and the differential gain or loss term, respectively.
Through Eq. (1), we can see the importance and the necessity
to take into account those parameters which are responsible of
nonparaxial, optical activity, and walk-off effects. These addi-
tional terms will help to improve the description and the control
of rogue wave propagation under the above assumptions. As
the assumption of controllability [55] is verified by the above
model, we are going to find the rational solutions with variable
coefficients which may be useful to control the propagation of
the nonparaxial chiral optical rogue waves.

Modulated coefficients in Eq. (1) can strongly affect the
wave propagation in chiral optical fiber because of the non-
integrability of the model. To solve this problem, we use the
symmetry reduction method [56,57] to obtain some integrabil-
ity conditions and to reduce the generalized nonparaxial chiral
NLS equation to the higher-order integrable Hirota equation.
So doing, we use the envelope field in the form [55,58,59]

ψ(ξ,τ ) = A(ξ )V [Z(ξ ),T (ξ,τ )] exp{iρ(ξ,τ )}, (2)

to construct the rational solutions related to nonparaxial chiral
optical rogue waves, where A(ξ ) is the amplitude, Z(ξ ) the
effective propagation distance, T (ξ,τ ) the similitude variable,
and V [Z(ξ ),T (ξ,τ )] the complex field. The variable ρ(ξ,τ ) is
the phase of the wave. This form of envelope field is also known
as the similarity transformation or the reduction method.
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Substituting Eq. (2) into Eq. (1) gives a coupled system of partial differential equations with variable coefficients:

d(ξ )
(
AξξV + 2AξZξVZ + 2AξTξVT + 2AZξTξVZT + AZξξVZ + ATξξVT + AZξ

2VZZ + ATξ
2VT T − Aρξ

2V
)

−AV ρξ + P (ξ,τ )
(
AVT T Tτ

2 + AVT Tττ − AV ρτ
2) + γ (ξ )

(
3AVT Tττρτ + 3AVT Tτρττ + 3AVT T Tτ

2ρτ

+AV ρτττ − AV ρτ
3
) ∓ D(ξ,τ )AV − C(ξ,τ )A2|V |2AV − α3(ξ )A2|V |2AV ρτ + η(ξ )ATτVT ∓ σ (ξ,τ )AV ρτ = 0, (3)

d(ξ )(AV ρξξ + 2AξρξV + 2AZξρξVZ + 2AρξTξVT ) + AξV + AVZZξ + AVT Tξ + P (ξ,τ )(AV ρττ + 2AVT Tτρτ )

− γ (ξ )(AVT Tτττ + 3AVT T TτTττ + AVT T T Tτ
3 − 3AVT Tτρτ

2 − 3AV ρττρτ ) + μ(ξ,τ )AV

+α3(ξ )A2|V |2AVT Tτ + η(ξ )AV ρτ ± σ (ξ,τ )ATτVT = 0, (4)

where the scripts of differential equations are simpli-
fied as A(ξ ) = A,Z(ξ ) = Z, T (ξ,τ ) = T , ρ(ξ,τ ) = ρ, and
V [Z(ξ ),T (ξ,τ )] = V . According to the previous works
[55,59], we use the symmetry reduction given by Eq. (2) that
would reduce Eq. (1) to the higher-order integrable Hirota
equation in the form [60]

i
∂V

∂Z
= −∂2V

∂T 2
+ G|V |2V

+ 2
√

2iν

(
∂3V

∂T 3
+ 3|V |2 ∂V

∂T

)
. (5)

In the case of rogue waves finding, we take G = −1 to obtain
rational solutions. The parameter ν is a real constant. With
V [Z(ξ ),T (ξ,τ )] satisfying the relation Eq. (5), the similarity
reduction of Eqs. (3) and (4) yields

γ (ξ )TτTττ = 0, (6)

Tξ + 2d(ξ )Tτρτ + 2P (ξ,τ )Tτρτ ± σ (ξ,τ )Tτ

−γ (ξ )(Tτττ − 3Tτρτ
2) = 0, (7)

Aξ + A[d(ξ )ρξξ + ρττP (ξ,τ ) + 3γ (ξ )ρττρτ + μ(ξ,τ )

+ η(ξ )ρτ ] = 0, (8)

γ (ξ )Tτ
3 + 2

√
2νZξ = 0, (9)

AξV + AZξVZ + ATξVT = 0, (10)

α3(ξ )A2Tτ − 6
√

2νZξ = 0, (11)

d(ξ )Tξξ + P (ξ,τ )Tττ + 3γ (ξ )(Tττρτ + Tτρττ )

+ η(ξ )Tτ = 0, (12)

Zξ + d(ξ )Tξ
2 + P (ξ,τ )Tτ

2 + 3γ (ξ )ρτTτ
2 = 0, (13)

ρξ + d(ξ )ρξ
2 + P (ξ,τ )ρτ

2 + γ (ξ )(ρτ
3 − ρτττ )

± σ (ξ,τ )ρτ ± D(ξ,τ ) = 0, (14)

GZξ + A2(C(ξ,τ ) + α3(ξ )ρτ ) = 0, (15)

AξξV + 2AξZξVZ + 2AξTξVT + 2AZξTξVZT

+AZξξVZ + AZξ
2VZZ = 0. (16)

Here, the subscripts ξ and τ denote spatial and temporal deriva-
tives, respectively. Through the above symmetry reduction
method, the constraints or integrability conditions of the model
given in Eq. (1) are derived from the differential equations of
which the simplified forms stand from Eq. (6) to Eq. (16),
respectively, as follows −3AVT T �= 0, AVT �= 0, V �= 0, −
AVT T T �= 0, 2dρξ �= 0, A|V |2VT �= 0, AVT �= 0, AVT T �= 0,

− AV �= 0, − A|V |2V �= 0, and d �= 0.
We should keep in mind that each constraint plays an im-

portant role in the choice of arbitrary functions and parameters
of the system. To have an aperture of dynamics behavior
of parameters, the above equations should be solved to give
the information on the form and order of each coefficient of
the model and on variables related to the complex field. The
resolution of Eq. (6) yields for γ (ξ ) �= 0 and for TτTττ = 0 to
the similarity variable

T (ξ,τ ) = T1(ξ )τ + T0(ξ ), (17)

where T1(ξ ) and T0(ξ ) are arbitrary functions. From Eq. (9),
the effective propagation distance Z(ξ ) will be

Z(ξ ) = −
√

2

4ν

∫ ξ

0
γ (s)T1(s)3ds. (18)

Equation (11) gives the result

α3(ξ ) = −3γ (ξ )T1
2(ξ )A−2(ξ ). (19)

α3(ξ ) has the physical sense of SS. The substitution of Eq. (17)
into Eq. (12) tends to d(ξ )Tξξ + 3γ (ξ )Tτρττ + η(ξ )Tτ = 0. As
γ (ξ ) �= 0, T1(ξ ) �= 0, and Tξξ = T1

ξξ
τ + T0ξξ

, the phase of the
envelope field can be written as

ρ(ξ,τ ) = ρ3(ξ )τ 3 + ρ2(ξ )τ 2 + ρ1(ξ )τ + ρ0(ξ ), (20)

with

ρ3(ξ ) = − 1

18

d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )
,

(21)

ρ2(ξ ) = −1

6

d(ξ )T0(ξ )ξξ + η(ξ )T1(ξ )

γ (ξ )T1(ξ )
,

where ρ1(ξ ) and ρ0(ξ ) are arbitrary functions. Through relation
Eq. (15), one finds that

C(ξ,τ ) = C2(ξ )τ 2 + C1(ξ )τ + C0(ξ ), (22)
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with

C2(ξ ) = −1

2

T1(ξ )d(ξ )T1(ξ )ξξ

A(ξ )2
,

C1(ξ ) = −T1(ξ )[d(ξ )T0(ξ )ξξ + T1(ξ )2η(ξ )]

A(ξ )2
, (23)

C0(ξ ) = γ (ξ ) T1(ξ )2

A(ξ )2

[
3 ρ1(ξ ) + 1

4

√
2GT1(ξ )

ν

]
.

C(ξ,τ ) is the space- and time-modulated SPM. Equation (13)
stands for

P (ξ,τ ) = P2(ξ )τ 2 + P1(ξ )τ + P0(ξ ), (24)

with

P2(ξ ) = 1

2

d(ξ )T1(ξ )ξξ

T1(ξ )
− d(ξ )T1(ξ )ξ 2

T1(ξ )2
,

P1(ξ ) = η(ξ ) + d(ξ )T0(ξ )ξξ

T1(ξ )
− 2

d(ξ )T1(ξ )ξT0(ξ )ξ
T1(ξ )2

,

P0(ξ ) = 1

4

γ (ξ ) T1(ξ )
√

2

ν
− 3 γ (ξ ) ρ1(ξ ) − d(ξ )T0(ξ )ξ 2

T1(ξ )2
.

(25)

P (ξ,τ ) is the space- and time-modulated GVD. Through
Eq. (7), we arrive at

±σ (ξ,τ ) = σ4(ξ )τ 4 + σ3(ξ )τ 3 + σ2(ξ )τ 2 + σ1(ξ )τ + σ0(ξ ),

(26)

where the parameters σ4(ξ ), σ3(ξ ), σ2(ξ ), σ1(ξ ), and σ0(ξ ) are
expressed in Appendix B. ±σ (ξ,τ ) is the left- and right-hand
side of the walk-off effect. Equation instead of relation Eq. (8)
is transformed to

A(ξ ) = A0 exp

{∫ ξ

0
f (s)ds

}
, (27)

where A0 is a constant and with

f = μ3(ξ )τ 3 + μ2(ξ )τ 2 + μ1(ξ )τ + μ0(ξ ) − μ(ξ,τ ),

μ(ξ,τ ) = μ3(ξ )τ 3 + μ2(ξ )τ 2 + μ1(ξ )τ + 2μ0(ξ ), (28)

where the parameters of the gain or loss term μ(ξ,τ ) are given
in Appendix C. μ(ξ,τ ) is the space- and time-modulated gain
or loss term. It follows from the above equations that the
amplitude of the envelope field becomes

A(ξ ) = A0 exp

{∫ ξ

0
−μ0(s)ds

}
, (29)

with

μ0(ξ ) = −1

3

d(ξ )T0(ξ )ξ 2η(ξ )

γ (ξ )T1(ξ )2
− 1

3

d(ξ )2T0(ξ )ξ 2T0(ξ )ξξ

γ (ξ )T1(ξ )3

+ 1

12

T1(ξ )
√

2η(ξ )

ν
− η(ξ )ρ1(ξ )

+ 1

12

√
2d(ξ )T0(ξ )ξξ

ν
− d(ξ )ρ0(ξ )ξξ . (30)

The result coming from Eq. (14) is

±D(ξ,τ ) = D6(ξ )τ 6 + D5(ξ )τ 5 + D4(ξ )τ 4 + D3(ξ )τ 3

+D2(ξ )τ 2 + D1(ξ )τ + D0(ξ ), (31)

with D−(ξ ) = −D+(ξ ) and where D6(ξ ),D5(ξ ),D4(ξ ),
D3(ξ ), D2(ξ ),D1(ξ ), and D0(ξ ) are given in Appendix D.
±D(ξ,τ ) is the left- and right-hand side of the space- and
time-modulated linear birefringence.

The resolution of the above differential equations reveals
and confirms the assumption of the space- and time-modulated
variable of the TOD, gain or loss term, linear birefringence,
SPM, and walk-off coefficients. More specifically, it reveals
the optically active nature of the system through the left-
and right-hand sides of mathematical expressions of the linear
birefringence and walk-off term. In fact, the chirality, known
as optical activity in optics, is the ability to rotate plane
polarized light and this happens when the plane polarized light
hits an optically active compound. The more compounds it
hits, the more it rotates. Physically, when the polarized light
leaves the chiral optical fiber which is optically active, we
have to rotate the analyzer to allow the plane of light to pass
through. This angle of rotation, called observed rotation, can
be directed to the right-hand side, that is a positive rotation or
clockwise rotation, also called dextrorotatory. In the case of
which the analyzer has to be rotated to the left-hand side for
the polarized light to pass through, that is a negative rotation
or counterclockwise rotation, called levorotatory. Hence, the
mathematical expressions of relation Eqs. (26) and (31) with
positive signs refer to the dextrorotatory components and the
ones with negative signs to the levorotatory components of
the system. As we can see, they are equal in magnitude but
opposite in sign.

We can observe through the above variable coefficients of
the model that P (ξ,τ ), μ(ξ,τ ),D(ξ,τ ), C(ξ,τ ), and σ3(ξ,τ )
are polynomials in τ with coefficients being functions of ξ .
Parameters d(ξ ), γ (ξ ), α3(ξ ), and η(ξ ) are arbitrary functions,
except the SS, which depends on the TOD and amplitude.
Since the nonparaxial parameter d(ξ ), the differential gain
or loss term η(ξ ), and third-order dispersion γ (ξ ) are major
functions of the base equation coefficients, it appears from
analytical results that they are are the main keys to control
the amplitude, the SS, the GVD, the SPM, the walk-off term,
and linear birefringence in optical fibers. Therefore, they can
be considered as specific control parameters of the system.
The TOD coefficient γ (ξ ) can also be used to control the
effective propagation distance Z(ξ ). The gain or loss term of
the induce optical activity μ(ξ,τ ) can be used to manage the
optical activity on the amplitude A(ξ ), SS coefficient α3(ξ ),
and on the SPM nonlinearity C(ξ,τ ).

According to the MDT method [47–49,61], which is well-
known and clearly derived by many authors, the first- and
second-order of the complex field V [Z(ξ ),T (ξ,τ )] are ex-
pressed by Akhmediev et al. [60]. It is good to mention that the
first-order of the complex field V [Z(ξ ),T (ξ,τ )] was found by
Peregrine [40] and the second-order by Akhmediev et al. [62].
Later, Ankiewicz et al. [60] found the first- and second-order
of the Hirota equation. By considering the correspondence
Z(ξ ) = x, 1√

2
T (ξ,τ ) = t , and ν = α3, in this last reference,
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the first-order complex field V [Z(ξ ),T (ξ,τ )] yields

V1[Z(ξ ),T (ξ,τ )] =
[

1 − G1 + iH1

D1

]
exp {iZ(ξ )}, (32)

where

G1 = 4, H1 = 8Z(ξ ),
(33)

D1 = 1 + [
√

2T (ξ,τ ) + 12νZ(ξ )]2 + 4Z(ξ )2.

The partial solution Eq. (32), is known as the Peregrine soliton
[40]. Then, collecting this solution together with the founded
amplitude and phase of the wave, we construct the first-order
rational solution related to the nonparaxial chiral optical rogue
wave given by

ψ1 = A(ξ )

[
1 − G1 + iH1

D1

]
exp {iZ(ξ ) + iρ(ξ,τ )}, (34)

which result becomes

ψ1 = A0 exp

{
−

∫ ξ

0
μ0(s)ds

}

×
[

1 − G1 + iH1

D1

]
exp {iZ(ξ ) + iρ(ξ,τ )}. (35)

This first-order rational solution is used to describe the propa-
gation of nonparaxial optical rogue wave in a fiber filled with
chiral materials. For suitable choice of arbitrary parameters of
the original Eq. (1), we can manage through a simultaneous
controllability, the rogue wave structures with the specific
control parameters. The second-order rational solution of the
complex field V [Z(ξ ),T (ξ,τ )] stands for

V2[Z(ξ ),T (ξ,τ )] =
[

1 + G2 + iZ(ξ )H2

D2

]
exp i{Z(ξ )}, (36)

where G2,H2, and D2 are given by the relations

G2 = −48T 4 − 1152
√

2νZT 3 − 144T 2[4Z2(36ν2 + 1) + 1]

− 576
√

2νZT [12Z2(12ν2 + 1) + 7] − 192Z4

× [216(6ν4 + ν2) + 5] − 864Z2(44ν2 + 1) − 36,

H2 = −96T 4 − 2304
√

2νZT 3 − 96T 2[4Z2(108ν2 + 1) − 3]

− 1152
√

2νZT [4Z2(36ν2 + 1)] − 384Z4(36ν2 + 1)2

− 192Z2(180ν2 + 1) + 360,

D2 = 8T 6 + 288
√

2νZT 5 − 432Z4(624ν4 − 40ν2 − 1)

+ 36Z2(556ν2 + 11) + 9 + 64Z6(36ν2 + 1)3 + 96
√

2

×ZT 3[12Z2(60ν2 + 1) − 1]

+ 12T 4[4Z2(180ν2 + 1) + 1]

+ 6T 2[16Z4[216ν2(30ν2 + 1) − 1]

− 24Z2(60ν2 + 1) + 9] + 72
√

2νZT [16Z4(36ν2 + 1)

+ 8Z2(1 − 108ν2) + 17]. (37)

According to the same correspondence joined with the founded
variables including the above solutions, the second-order
rational solution, related to a particular solution of Eq. (1),

was obtained:

ψ2 = A(ξ )

[
1 + G2 + iZ(ξ )H2

D2

]
exp {iZ(ξ ) + iρ(ξ,τ )}.

(38)

Then, the construction of the second-order nonparaxial chiral
optical rogue wave yields

ψ2 = A0 exp

{
−

∫ ξ

0
μ0(s)ds

}

×
[

1 + G2 + iZ(ξ )H2

D2

]
exp {iZ(ξ ) + iρ(ξ,τ )}. (39)

These second-order rational solutions arise due to the collision
between two or more ultrashort pulses in the optical fiber. More
specifically, they are nonparaxial chiral optical rogue waves
which can propagate through a fiber filled with chiral mate-
rials. The particularity of these solutions is the simultaneous
controllability of their amplitudes through the three specific
control parameters, which can be used to manage the intensity
and the shape of the waves. As the nonparaxiality, TOD,
and differential gain or loss terms depend on specific control
parameterts, they can therefore provide a more convenient
and controlled environment to experimentally study specific
optical communication problems.

III. DYNAMICS BEHAVIOR AND FEATURES OF
COMBINED EFFECT ON NONPARAXIAL CHIRAL

OPTICAL ROGUE WAVES

After the construction of the above solutions, the parameters
are chosen to investigate the dynamics behavior and the fea-
tures of combined effects on nonparaxial chiral optical rogue
waves. Afterwards, we plot the specific control parameters of
the system, the GVD, and the amplitudes of the envelope field
in the left- and right-hand sides to have an aperture of their
dynamic in the nonparaxial chiral optical fiber (see Figs. 1, 2,
and 3).

Then, we alternate the sign of chiral parameters in both
space and time in the first and second order of nonparaxial
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FIG. 1. Specific control parameters: the left- and right-hand side
of the gain or loss differential term η(ξ ), nonparaxial parameter d(ξ ),
and TOD γ (ξ ), where η(ξ ) = CT sn(ξ,k7), d(ξ ) = dn(ξ,k5), γ (ξ ) =
cn(ξ,k6), and CT = 1 ± KTc, with k5 = 0.2, k6 = 0.4, k7 = 0.5, and
KTc = 0.8.
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FIG. 2. The space- and time-modulated group velocity dispersion
P (ξ,τ ) on the left- and right-hand side, respectively, expressed in re-
lation Eq. (24), where η(ξ ) = CT sn(ξ,k7), d(ξ ) = dn(ξ,k5),γ (ξ ) =
cn(ξ,k6), T0(ξ ) = sn(ξ,k3), T1(ξ ) = dn(ξ,k3), ρ0(ξ ) = dn(ξ,k2),
ρ1(ξ ) = cn(ξ,k1), and CT = 1 ± KTc, with k1 = 0.3, k2 = 0.5, k3 =
0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4, k7 = 0.5, ν = 0.2, and KTc = 0.8.

chiral optical rogue wave solutions to analyze their behavior
and therefore to optimize the eventual stability of the solutions
(see Figs. 4 and 5).

Figure 1 depicts the dynamical behavior of each specific
parameter in the system. On the one hand, we can observe the
influence of chiral nature of the differential gain or loss term
through its weak peak in the left-hand side and high peak in
the right-hand side. On the other hand, the amplitude and the
width of each parameter depend on the value of their moduli
ki(i = 5,6,7) and on the type of Jacobian elliptic function
they carry (cn,dn,sn). The left- and right-hand sides of the
space- and time-modulated group-velocity dispersion P (ξ,τ )
are illustrated in Fig. 2 and expressed by relation Eq. (24)
with their arbitrary Jacobian elliptic functions and moduli
given in the figure caption. It can be seen that the structure
of GVD differs from one side to the other. Figure 3 depicts the
profiles of the amplitudes of the envelope field A(ξ ) on both
sides. We remark on the trace of each evolution, the presence
of two dark-bright collisions in the right-hand side and two
bright-dark collisions in the left-hand side. These collisions
are better observed through analytical simulation of the first-
and second-order nonparaxial chiral optical rogue waves which

ξ
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A
(ξ

) -

0

1

2

ξ

-10 -5 0 5

A
(ξ

) +

0

1

2
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FIG. 3. The left- and right-hand side amplitude A(ξ ), presented in
relation Eq. (29), where η(ξ ) = CT sn(ξ,k7), d(ξ ) = dn(ξ,k5),γ (ξ )=
cn(ξ,k6), T0(ξ ) = sn(ξ,k3), T1(ξ ) = dn(ξ,k3), ρ0(ξ ) = dn(ξ,k2),
ρ1(ξ ) = cn(ξ,k1), and CT = 1 ± KTc, with k1 = 0.3, k2 = 0.5, k3 =
0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4, k7 = 0.5, and KTc = 0.8.

FIG. 4. First-order nonparaxial chiral optical rogue waves on the
left- and right-hand side of the rational solution given by Eq. (35),
where η(ξ ) = CT sn(ξ,k7), d(ξ ) = dn(ξ,k5), γ (ξ ) = cn(ξ,k6), T0(ξ )=
sn(ξ,k3), T1(ξ ) = dn(ξ,k3), ρ0(ξ ) = dn(ξ,k2), ρ1(ξ ) = cn(ξ,k1),
and CT = 1 ± KTc, with k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4,

k5 = 0.2, k6 = 0.4, k7 = 0.5, ν = 0.2, and KTc = 0.8.

are illustrated in Figs. 4 and 5. Throughout these figures, we
notice a main difference on the structure and on the amplitude
of the first- and second-order in both sides. We also remark an
energy transfer from the left-hand to right-hand side on each
solution.

More specifically, in Fig. 3 we can see the contrast of optical
activity in the sense of oscillation of each component of the
amplitude as it increase then decrease on the left-hand side,
whereas it decreases then increases on the right-hand side.
Generally, in optically active media, components are equal
in magnitude but different in sign. However, in this case, the
equality of magnitude is affected by the differential gain or loss
term η(ξ ) = (1 ± KTc)sn(ξ,k7), which is responsible for the
observed difference on both sides and, consequently, on both
sides of the amplitude. It can be seen throughout Fig. 1 that
the amplitude of the differential gain or loss term is four times
higher in the right-hand side compare to the left-hand side.
Now, when we look at the mathematical expression of the
space- and time-modulated GVD, we denote that it depends
also on the differential gain or loss term; however, GVD
profiles are nearly equal in magnitude, as shown in Fig. 2. This

FIG. 5. Second-order nonparaxial chiral optical rogue waves on
the left- and right-hand side of the rational solution given by Eq. (39),
where η(ξ ) = CT sn(ξ,k7), d(ξ ) = dn(ξ,k5), γ (ξ ) = cn(ξ,k6),T0(ξ )=
sn(ξ,k3), T1(ξ ) = dn(ξ,k3), ρ0(ξ ) = dn(ξ,k2), ρ1(ξ ) = cn(ξ,k1),
and CT = 1 ± KTc, with k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4, k5=
0.2, k6 = 0.4, k7 = 0.5, ν = 0.2, and KTc = 0.8.
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contrast is due to the fact that the differential gain or loss term
plays a role of loss in the expression of the amplitude and the
role of gain in the expression of GVD. This is an advantage for
the waves, which become more stable as we can see in Figs. 4

and 5. As the vector NLS equations describe extreme waves
with higher accuracy than the scalar NLS equation models,
we are going to use the vector nonparaxial NLS equations to
enrich the work.

IV. THE INFLUENCE OF COMBINED EFFECTS ON THE NUMERICAL SOLUTIONS OF VECTOR NONPARAXIAL NLS
EQUATIONS WITH CONSTANT COEFFICIENTS

To illustrate the nonparaxiality, optical activity, and walk-off effects on the propagation of nonparaxial chiral optical rogue
waves, we derive from the model obtained in Eq. (A25) the vector nonparaxial NLS equations with constant and modulated
coefficients which governs the propagation of rogons in optical fibers filled with chiral materials. So doing, the coupled system
of the nonparaxial NLS equation with constant coefficients is given by

dψ1ξξ + iψ1ξ + Pψ1ττ − iγψ1τττ + iμψ1 ∓ Dψ1 − C(|ψ1|2 + |ψ2|2)ψ1 + iα3(|ψ1|2 + |ψ2|2)ψ1τ + (η ± iσ )ψ1τ = 0,

dψ2ξξ + iψ2ξ + Pψ2ττ − iγψ2τττ + iμψ2 ∓ Dψ2 − C(|ψ1|2 + |ψ2|2)ψ2 + iα3(|ψ1|2 + |ψ2|2)ψ2τ + (η ± iσ )ψ2τ = 0.

(40)

To simplify the expressions of waves functions, we let ψ1(ξ,τ ) = u(ξ,τ ) and ψ2(ξ,τ ) = v(ξ,τ ). In this part of the work, we
focus our attention on the generation and propagation of bright and dark rogue wave solutions when the nonparaxial effect arises
fundamentally from chiral optical fibers. To study the influence of combined effects of the nonparaxiality, optical activity, and
walk-off on optical rogue wave propagation, we used an algorithm scheme derived by Chamorro-Posada et al. [37], namely,
difference-differential equation method that has a wider applicability on nonparaxial beam propagation methods. In this method,
we used the finite difference formulas to approximate derivatives with respect to ξ coordinate, and then the fast Fourier transforms
(FFTs) are used to compute efficiently the second- and third-order diffractions in the spectral domain.

The finite difference formulas for the derivatives are given in Appendix E. Substituting these formulas in the coupled nonparaxial
NLS equations with constant coefficients, we obtained the difference-differential equations below:

un+1(τ ) = 1

2d + i�ξ

[(
4d − 2P�ξ 2 ∂2

∂τ 2
+ 2iγ�ξ 2 ∂3

∂τ 3
− 2iμ�ξ 2 ± 2�ξ 2D + 2C�ξ 2(|un(τ )|2 + |vn(τ )|2)

− 2iα3�ξ 2(|un(τ )|2 + |vn(τ )|2)
∂

∂τ
− 2�ξ 2(η ± iσ )

∂

∂τ

)
un(τ ) − (2d − i�ξ )un−1(τ )

]
,

vn+1(τ ) = 1

2d + i�ξ

[(
4d − 2P�ξ 2 ∂2

∂τ 2
+ 2iγ�ξ 2 ∂3

∂τ 3
− 2iμ�ξ 2 ± 2�ξ 2D + 2C�ξ 2(|un(τ )|2 + |vn(τ )|2)

− 2iα3�ξ 2(|un(τ )|2 + |vn(τ )|2)
∂

∂τ
− 2�ξ 2(η ± iσ )

∂

∂τ

)
vn(τ ) − (2d − i�ξ )vn−1(τ )

]
. (41)

These equations define the explicit algorithm in which the effects of the transverse differential operators ∂2

∂τ 2 and ∂3

∂τ 3 are computed
efficiently and accurately by the FFTs. An implementation on the index n gives us the numerical solutions of each component. We
used as initial conditions, the rational solutions of the envelope fields [30], constructed by the DDT method, where we consider
the correspondence t → ξ and x → τ :

u(ξ,τ ) = u01

(
p2τ 2 + p4ξ 2 + pτ (α1 + βθ1) − iα1p

2ξ + βθ1

p2τ 2 + p4ξ 2 + β(pτ + 1)

)
(42)

v(ξ,τ ) = v01

(
p2τ 2 + p4ξ 2 + pτ (α2 + βθ2) − iα2p

2ξ + βθ2

p2τ 2 + p4ξ 2 + β(pτ + 1)

)
,

where the parameters are

u01 = a1 exp [i(q1τ − v1ξ )] v01 = a1 exp [i(q2τ − v2ξ )],

v1 = q2
1 + 2

(
a2

1 + a2
2

)
v2 = q2

2 + 2
(
a2

1 + a2
2

)
,

α1 = 4p2

p2 + 4q1
2

α2 = 4p2

p2 + 4q2
2
,

θ1 = 2q1 + ip

2q1 − ip
θ2 = 2q2 + ip

2q2 − ip
, (43)

with

p = 2Im(λ + k), χ = Im(k), q1 + q2 = 2Re(λ + k),

q1 − q2 = 2q, β = p3

χ (p2 + 4q1q2)
,

k = 2.36954 + 1.1972i,

λ = −1.69162 − 1.79721i. (44)

To plot the numerical solutions, we choose appropriately, free
functions T1(ξ ), T0(ξ ), μ(ξ ), and γ (ξ ) and the Jacobian elliptic
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FIG. 6. Nonparaxial chiral optical vector rogue waves with con-
stant coefficients on the right- and left-hand side |ψ1,2(ξ,τ )|, where
the parameters are a1 = 3, a2 = 3, d = 10, P = − 0.5, γ = 0.4,μ=
0.3,D = ±0.6, C = 2, α3 = 0.2, η = 0.5, σ = ±0.1, k1 = 0.3,

k2 = 0.5, k3 = 0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4, and k7 = 0.5.
Here, the initial conditions take the form of exact solution Eqs. (42),
(43), and (44).

functions below [64]:

dn(z,k) = 1 − k2 sin (z)2

2
,

cn(z,k) = cos(z) − k2 sin(z)

[
z − sin(z) cos(z)

4

]
, (45)

sn(z,k) = sin(z) − k2 cos(z)

[
z − sin(z) cos(z)

4

]
.

The parameters are chosen to be bounded in the intervals
−10 < ξ < 10 and −10 < τ < 10. Curves are plotted with
the help of Matlab through a pseudospectral method. So doing,
we obtained identical right- and left-hand sides of nonparaxial
chiral optical vector rogue waves with constant coefficients
(see Figs. 6, 7, and 8).

These representations showed us the rapid convergence of
the pseudospectral method based on the difference-differential
equation method [37] when �ξ/d → 0. In the case of con-
stant coefficients, it can be seen that the vector nonparaxial

FIG. 7. Two-dimensional representations of the nonparaxial chi-
ral optical vector rogue waves with constant coefficients in both
sides, where the initial conditions take the form of exact solution
Eqs. (42), (43), and (44) with the following parameters: a1 =
1, a2 = 1, d = 100, P = −0.5, γ = 0.4, μ = 0.3, D = ±0.6, C =
2, α3 = 0.2, η = 0.5, σ = ±0.1, k1 = 0.3, k2 = 0.5, k3 = 0.6, k4 =
0.4, k5 = 0.2, k6 = 0.4, and k7 = 0.5.

FIG. 8. Nonparaxial chiral optical vector rogue waves with
constant coefficients in both sides, where the initial conditions
are expressed in the form of exact solutions Eqs. (42), (43), and
(44) with the parameters a1 = 1, a2 = 1, d = 10, P = −0.5, γ =
0.4, μ = 0.3, D = ±0.6, C = 2, α3 = 0.2, η = 10, σ = ±10, k1 =
0.3, k2 = 0.5, k3 = 0.6, k4 = 0.4, k5 = 0.2, k6 = 0.4, and k7 = 0.5.

chiral optical rogue waves are localized in space and time
as usual rogue waves and that the forward and backward
of each component are similar. We notice that the mixture
of bright and dark structures on each component are due to

FIG. 9. The nonparaxial chiral optical rogue waves with man-
agement are derived from Eqs. (49), where the parameters of the
base equations are given in relation Eqs. (47) and (46) and the
initial conditions take the form of exact solutions given in relation
Eqs. 42, 43, and 44, with the following arbitrary constants: a1 =
3, a2 = 3, k5 = 0.2, k6 = 0.4, k7 = 0.5, P (ξ,τ ) = dn(ξ,k)τ 2 +
cn(ξ,k)τ + sn(ξ,k),KTc = 0.8, and CT = 1 ± KTc.
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the coupling of vectorial model on the one hand, and to the
interaction between waves as consequence of narrowness of
the two components in the system on the other hand. The
two-dimensional representations of Fig. 7 showed the limit
of the extension of bright and dark spectral structures in the
retarded time axis at τ = 0. We can see how the intensity of
each spectrum increases when τ → 0 and the attenuation when
we are moving from each side of τ = 0. We noted that the weak
values of the walk-off are responsible for the wave smoothing.

V. INFLUENCE OF COMBINED EFFECTS ON THE
VECTOR NONPARAXIAL CHIRAL NLS EQUATIONS

WITH MODULATED COEFFICIENTS

To improve the description of the waves, we use the vector
nonparaxial chiral NLS equations with modulated coefficients.
From the model obtained in Eq. (A25), the coupled system
of the nonparaxial NLS equations in chiral optical fibers
with coupled space-dependence coupling field is expressed

as

d(ξ )ψ1ξξ + iψ1ξ + P (ξ,τ )ψ1ττ − iγ (ξ )ψ1τττ + iμ(ξ,τ )ψ1

∓D(ξ,τ )ψ1 − C(ξ,τ )(|ψ1|2 + |ψ2|2)ψ1 + iα3(ξ )

× (|ψ1|2 + |ψ2|2)ψ1τ + [η(ξ ) ± iσ (ξ,τ )]ψ1τ = 0,

d(ξ )ψ2ξξ + iψ2ξ + P (ξ,τ )ψ2ττ − iγ (ξ )ψ2τττ + iμ(ξ,τ )ψ2

∓D(ξ,τ )ψ2 − C(ξ,τ )(|ψ1|2 + |ψ2|2)ψ2 + iα3(ξ )

× (|ψ1|2 + |ψ2|2)ψ2τ + [η(ξ ) ± iσ (ξ,τ )]ψ2τ = 0. (46)

It can been seen from Eqs. (2) that the differential gain and
loss term η(ξ ), the self-steepening α3(ξ ), the gain or loss term
μ(ξ,τ ), and the self-phase modulation C(ξ,τ ) depend on chiral
parameter Tc through the relation CT = 1 ± KTc and the linear
birefringence D(ξ,τ ) and walk-off term σ (ξ,τ ) are functions
of chiral parameter Tc. Considering the order of polynomials
of each parameter of the number like Eq. (1) obtained from
the analytical results, we can choose them as Jacobian elliptic
functions for the good stability of the waves and their forms,
arbitrarily

α3(ξ ) = CT × cn(ξ,k), η(ξ ) = CT × sn(ξ,k),

d(ξ ) = dn(ξ,k), γ (ξ ) = cn(ξ,k),

C(ξ,τ ) = [dn(ξ,k)τ 2 + cn(ξ,k)τ + sn(ξ,k)] × CT ,

P (ξ,τ ) = −[dn(ξ,k)τ 2 + cn(ξ,k)τ + sn(ξ,k)],

μ(ξ,τ ) = [dn(ξ,k)τ 3 + cn(ξ,k)τ 2 + sn(ξ,k)τ + dn(ξ,k)] × CT ,

σ (ξ,τ ) = [dn(ξ,k)τ 4 + cn(ξ,k)τ 3 + sn(ξ,k)τ 2 + dn(ξ,k)τ + cn(ξ,k)] × KTc,

D(ξ,τ ) = [dn(ξ,k)τ 6 + cn(ξ,k)τ 5 + sn(ξ,k)τ 4 + dn(ξ,k)τ 3 + cn(ξ,k)τ 2 + sn(ξ,k)τ + dn(ξ,k)]KTc. (47)

One may also choose them as polynomial functions but our interest is motivated by functions that can generate stable waves. As
the propagation variable ξ tends to n�ξ in the discretized domain, the Jacobian elliptic functions take the form

dn(ξ,k) → dn(n�ξ,k) = 1 − k2 sin (n�ξ )2

2
,

cn(ξ,k) → cn(n�ξ,k) = cos(n�ξ ) − k2 sin(n�ξ )

{
n�ξ − sin[n�ξ cos(n�ξ )]

4

}
, (48)

sn(ξ,k) → sn(n�ξ,k) = sin(n�ξ ) − k2 cos(n�ξ )

{
n�ξ − sin[n�ξ cos(n�ξ )]

4

}
.

It can be seen that, by splitting Eqs. (46) in the right- and left-hand sides, we obtained four coupled nonparaxial NLS equations
which differ by the signs of linear birefringence and walk-off term. The substitution of the finite difference formulas in Eqs. (46)
yields

un+1(τ ) = 1

2d(n�ξ ) + i�ξ

[(
4d(n�ξ ) − 2P (n�ξ,τ )�ξ 2 ∂2

∂τ 2
+ 2iγ (n�ξ )�ξ 2 ∂3

∂τ 3
− 2iμ(n�ξ,τ )�ξ 2 ± 2�ξ 2D(n�ξ,τ )

+ 2C(n�ξ,τ )�ξ 2(|un(τ )|2 + |vn(τ )|2) − 2iα3(n�ξ )�ξ 2(|un(τ )|2 + |vn(τ )|2)
∂

∂τ

− 2�ξ 2(η(n�ξ ) ± iσ (n�ξ,τ ))
∂

∂τ

)
un(τ ) − (2d(n�ξ,τ ) − i�ξ )un−1(τ )

]
,

vn+1(τ ) = 1

2d(n�ξ ) + i�ξ

[(
4d(n�ξ ) − 2P (n�ξ,τ )�ξ 2 ∂2

∂τ 2
+ 2iγ (n�ξ )�ξ 2 ∂3

∂τ 3
− 2iμ(n�ξ,τ )�ξ 2 ± 2�ξ 2D(n�ξ,τ )

+ 2C(n�ξ,τ )�ξ 2(|un(τ )|2 + |vn(τ )|2) − 2iα3(n�ξ )�ξ 2(|un(τ )|2 + |vn(τ )|2)
∂

∂τ

− 2�ξ 2(η(n�ξ ) ± iσ (n�ξ,τ ))
∂

∂τ

)
vn(τ ) − (2d(n�ξ,τ ) − i�ξ )vn−1(τ )

]
. (49)
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FIG. 10. The two-dimensional representation of the nonparaxial
chiral optical vector rogue waves with variable coefficients are
derived from Eqs. (49), where the parameters of the base equations
are given in relation Eqs. (47) and (46) and the initial conditions
take the form of exact solutions given in relation Eqs. (42), (43)
and (44), with the following arbitrary constants: a1 = 1, a2 =
1, k5 = 0.2, k6 = 0.4, k7 = 0.5, P (ξ,τ ) = dn(ξ,k)τ 2 + cn(ξ,k)τ +
sn(ξ,k),KTc = 0.8, and CT = 1 ± KTc.

By using the difference-differential equation method and fast
Fourier transforms (FFTs), we plot the numerical solutions
of the coupled nonparaxial chiral NLS equations of each
beam (ψ1 and ψ2) in both sides, left (−) and right (+)
(see Figs. 9–11).

Throughout these figures, we remark that the structure of
each component is similar from one hand to the other but a
notable difference is observed in the amplitude as we can see
in Fig. 9. The two-dimensional representations depict in Fig.
10(a), the symmetries of the bright and dark maxima through
the retarded time axis τ and the dark-dark symmetries through
the propagation distance axis ξ in both side. On Fig. 10(b), we
can observe a significant decrease of the envelope fields when
we reduce the amplitudes of the seeding solutions. We also
denote a similitude on the structure and amplitude in Figs. 11.
The appearance of curvatures in the four components are due
to the unity value of their moduli as expressed in Fig. 11.

VI. CONCLUSION

We derived both scalar and vector nonparaxial NLS equa-
tions with constant and modulated coefficients to improve

FIG. 11. Nonparaxial chiral optical vector rogue waves with mod-
ulated coefficients are derived from Eqs. (49) where the parameters
of the base equations are given in relations Eqs. (47) and (46)
and where the initial conditions take the form of exact solutions
given in relations Eqs. (42), (43), and (44), with the following arbi-
trary constants: a1 = 1, a2 = 1 and k5 = k6 = k7 = 1, d(ξ ) = 10 ×
dn(ξ,k), P (ξ,τ ) = −(dn(ξ,k)τ 2 + cn(ξ,k)τ + sn(ξ,k)), KTc =
0.8, and CT = 1 ± KTc.

the description of rogue waves propagation in optical fibers
filled with chiral materials. Our models, in particular, verified
the assumption of controllability on the one hand, and takes
into account the parameters responsible for the nonparaxiality,
optical activity, and walk-off effect, on the other hand. The
first- and second-order nonparaxial chiral optical rogue waves
were investigated by the MDT method. As the nonparaxiality,
TOD, and differential gain or loss terms depend on specific
control parameters d(ξ ), γ (ξ ), and η(ξ ), it appeared that they
are the main keys to control the amplitude of the envelope
fields, SS, GVD, SPM, walk-off effect, linear birefringence,
and the effective propagation distance. Therefore, we have
concluded that among previous models that have been studied
before, the models derived in this work allowed us to improve
the description of rogue waves and their control in chiral optical
fibers with higher-order nonlinear effects. In these models,
we also denoted the influences of TOD and differential gain
or loss term. Then, the algorithm scheme derived for the
nonparaxial beam propagation methods, namely, difference-
differential equation method, was used to compute efficiently
the diffractions in the spectral domain. After many numerical
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simulation tests, we remarked that the increase or decrease
of the three specific control parameters can affect the wave
shape and the amplitude of each component. We have also
shown that, among those specific control parameters, the
nonparaxial coefficient has the most influential effect, whereas
the two others that are differential gain or loss and walk-off
terms are physically inactive. We found that in the absence
of nonparaxial parameter, the influence of the two others are
effective and equivalent. We also noticed that in the absence
of two specific control parameters, the last one becomes the
powerful influential effect in the system.

We improved our understanding through models under
consideration of combined effects on rogue wave propagation
in optical fibers filled with chiral materials. We have shown the
necessity to take into account the parameters responsible of the
simultaneous controllability of different effects in the system.
Those parameters revealed the control key and the novel
properties of nonparaxial chiral optical rogue wave solutions.
For specific parameter values, usual rogue waves, such as
the vector Peregrine, were obtained, showing the collisions
between bright and dark rogue waves. The study of combined
effects has allowed us to determine the powerful influence
among the effects, and the nonparaxial effect was claimed to be
the most influential one. The vector rogue wave solutions based
on the vector nonparaxial NLS equations, which modeled the
coupling of two nonlinear waves under the assumptions of
nonparaxiality, optical activity, and walk-off, contributed to
better control rogue wave phenomena in optical fibers filled
with chiral materials and in a variety of complex dynamics.
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APPENDIX A: THE DERIVATION OF THE
HOMOGENEOUS HIGHER-ORDER NONPARAXIAL NLS

IN CHIRAL OPTICAL FIBERS

We consider a model that satisfies both the breakdown of
the paraxial approximation as well as the requirements of
time-reversal symmetry and reciprocity through the Drude-
Born-Federov formalism. Under this formalism, the adequate
constitutive relations for the study of propagation of waves in

chiral medium are expressed as [63–65]

�D = εn
�E + ε0Tc

�∇ × �E, �B = μ0( �H + Tc
�∇ × �H ), (A1)

where the flux densities �D and �B arise in response to the
electric and magnetic field �E and �H propagating in the chiral

medium with εn = ε0 + ε2| �E|2. Here, ε0 and ε2 are linear and
nonlinear permittivity, respectively. μ0 is the permeability and
Tc the chiral parameter of the optical fiber. In the chiral optical
medium, the predicted Maxwell equations can be written as

�∇ · �D = ρv, �∇ · �B = 0,
(A2)

�∇ × �E = −∂ �B
∂t

, �∇ × �H = �J + ∂ �D
∂t

,

where the current density �J = σ �E and the charge density
ρ represents the sources for the electromagnetic field. The
quantity σ is the electrical conductivity and v is the volume.
Substituting Eq. (A1) into Eq. (A2), we obtain the following
wave equation:

∇2 �E + μ0εT
2 ∂2 �∇2 �E

∂t2

= μ0ε0
∂2 �E
∂t2

+ μ0σ
∂ �E
∂t

+ μ0ε2| �E|2 ∂2 �E
∂t2

+2μ0ε0T �∇ × ∂2 �E
∂t2

+ μ0ε2T | �E|2 �∇ × ∂2 �E
∂t2

+μ0σT �∇ × ∂ �E
∂t

. (A3)

The optical field �E is represented by right-hand (R) or left-hand
(L) polarizations in the z direction as

�E(�r,t) = (x̂ ∓ j ŷ)A(�r,t) exp[−j (k±z − ω0t)]

= �ψR,L exp[−j (k±z − ω0t)], (A4)

where �ψR,L is the complex envelope of the optical field in the
nonlinear chiral medium, K is the wave number, and ω0 is the
frequency.

After evaluation of different derivations of �E in x, y, and
z directions in Eq. (A3), we neglect all the second-order
terms, except the nonparaxial one. Considering that the wave
is propagating in the z direction implies

Kx = Ky = 0, Ez = 0. (A5)

Therefore, Eq. (A3) is reduced in x, y, and z directions,
respectively, as follows:

(
1 − μ0ε0T

2
c ω2

)[∂2Ex

∂x2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z2

]
− 2jKz

∂Ex

∂z
− K2

z Ex

+μ0εT
2
c

(
ω2K2

z Ex + 2jKzω
2 ∂Ex

∂z
− 2jK2

z ω
∂Ex

∂t
− K2

z

∂2Ex

∂t2

)

= (μ0ε0 + μ0ε2| �E|2)

[
∂2Ex

∂t2
+ 2jω

∂Ex

∂t
− ω2Ex

]
+ μ0σ

(
∂Ex

∂t
+ jωEx

)

+(2μ0ε0Tc + μ0ε2Tc| �E|2)

[
ω2 ∂Ey

∂z
+ jKz

(
∂2Ey

∂t2
+ 2jω

∂Ey

∂t
− ω2Ey

)]
+ μ0σTc

(
− jω

∂Ey

∂z
+ jKz

∂Ey

∂t
− ωKzEy

)
,

(A6)
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(
1 − μ0ε0T

2
c ω2

)[∂2Ey

∂x2
+ ∂2Ey

∂y2
+ ∂2Ey

∂z2

]
− 2jKz

∂Ey

∂z
− K2

z Ey

+μ0εT
2
c

(
ω2K2

z Ey + 2jKzω
2 ∂Ey

∂z
− 2jK2

z ω
∂Ey

∂t
− K2

z

∂2Ey

∂t2

)

= (μ0ε0 + μ0ε2| �E|2)

[
∂2Ey

∂t2
+ 2jω

∂Ey

∂t
− ω2Ey

]
+ μ0σ

(
∂Ey

∂t
+ jωEy

)
+ (2μ0ε0T + μ0ε2T | �E|2)

×
[

− ω2 ∂Ex

∂z
− jKz

(
∂2Ex

∂t2
+ 2jω

∂Ex

∂t
− ω2Ex

)]
+ μ0σT (jω

∂Ex

∂z
− jKz

∂Ex

∂t
+ ωKzEx), (A7)

[−(2μ0ε0Tc + μ0ε2Tc| �E|2)ω2 + jωμ0σTc]

[
∂Ey

∂x
− ∂Ex

∂y

]
= 0. (A8)

Equation (A8) leads to

∂Ey

∂x
= ∂Ex

∂y
= cst, Ey = Ey(z,t), Ex = Ex(z,t). (A9)

We multiply Eq. (A7) by ±j , and we do the addition of Eqs. (A6) and (A7), where we consider the conditions given in relation
Eq. (A9) and the following approximations:∣∣∣∣∂Ex

∂t

∣∣∣∣ � |2jωEx |,
∣∣∣∣∂2Ey

∂z2

∣∣∣∣ � |2jωEy |. (A10)

Therefore, the alternative form of the wave equation can be written as

(
1 − μ0ε0T

2
c ω2

)∂2ψR,L

∂z2
+ {−2jKz + 2jKzω

2μ0εT
2
c ± j [(2μ0ε0Tc + μ0ε2Tc| �E|2)ω2 − jωμ0σTc]}∂ψR,L

∂z

+{−K2
z + μ0ε0T

2
c ω2K2

z + ω2(μ0ε0 + μ0ε2| �E|2) − jωμ0σ ± j [−jKzω
2(2μ0ε0Tc + μ0ε2Tc| �E|2)

−Kzωμ0σTc]}ψR,L + {−2jK2
z ωμ0ε0T

2
c − μ0σ − 2jω(μ0ε0 + μ0ε2| �E|2) ± j [−2ωKz(2μ0ε0Tc

+μ0ε2Tc| �E|2) + jKzμ0σTc]}∂ψR,L

∂t
= 0, (A11)

where ψR,L = Ex ± jEy . Then, the reference changing is

ψR = Ex + jEy ψL = Ex − jEy,
(A12)

Ex = ψR + ψL

2
Ey = ψR − ψL

2
.

The division of Eq. (A6) by −2Kz yields

−
(
1 − μ0ε0T

2
c ω2

)
2Kz

∂2ψR,L

∂z2
+ j

(
1 − K2

0 T 2
c

)∂ψR,L

∂z
∓ j

K2
0 Tc

Kz

∂ψR,L

∂z
+ j

ωμ0ε2

Kz

∣∣ψR,L

∣∣2 ∂ψR,L

∂t
∓ j

μ0ε2ω
2Tc

2Kz

×|ψR,L|2 ∂ψR,L

∂z
+ j

K0

Kzc

(
1 + K2

z T 2
c

)∂ψR,L

∂t
± jωμ0σTc

2
ψR,L + 1

2

(
Kz − KzK

2
0 T 2

c − K2
0

Kz

)
ψR,L

−μ0ε2ω
2

2Kz

∣∣ψR,L

∣∣2
ψR,L ∓ ω2

2

(
μ0ε2Tc

∣∣ψR,L

∣∣2
)
ψR,L + j

ωμ0σ

2Kz

ψR,L ∓ K2
0 TcψR,L ∓ ωμ0σT

2Kz

∂ψR,L

∂z

±μ0σTc

2

∂ψR,L

∂t
± j

2K0Tc

C

∂ψR,L

∂t
+ μ0σ

2Kz

∂ψR,L

∂t
± jωμ0ε2Tc

∣∣ψR,L

∣∣2 ∂ψR,L

∂t
= 0, (A13)

where

K0 = ω

c
, μ0ε0c

2 = 1. (A14)

The dispersion relation is given by

Kz = K0

1 ± K0Tc

. (A15)
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For K2
0 T 2

c � 1, we get Kz = K0. By neglecting the nonlinear diffraction, the second and the last terms of Eq. (A13), and for the
following set of parameters become

v2 = 1

μ0ε0
, α = μ0σ, β = μ0ε2, K0 = ω

v
, z∗ = z

1 − K2
0 T 2

c

. (A16)

Equation (A13) takes the form

− 1

2K0

∂2ψR,L

∂z∗2 + j
∂ψR,L

∂z∗ + j
1

v

∂ψR,L

∂t
+ j

ωα

2K0
(1 ± K0Tc)ψR,L ∓ K2

0 TcψR,L − βω2

2K0
(1 ± K0Tc)

×|ψR,L|2ψR,L + α

2K0
(1 ± K0Tc)

∂ψR,L

∂t
± j2K2

0 Tc

ω

∂ψR,L

∂t
+ jωβ

K0
(1 ± K0Tc)|ψR,L|2 ∂ψR,L

∂t
= 0. (A17)

If we let

ψR,L = φ, then K = K0 = Kz. (A18)

Equation (A16) yields

− 1

2K

∂2φ

∂z∗2 + j
∂φ

∂z∗ + j
1

v

∂φ

∂t
+ j

ωα

2K
(1 ∓ KTc)φ − βω2

2K
(1 ∓ KTc)|φ|2φ ∓ K2Tcφ

+ α

2K
(1 ± KTc)

∂φ

∂t
± j

2K2Tc

ω

∂ψR,L

∂t
+ j

ωβ

K0
(1 ± KTc)|φ|2 ∂φ

∂t
= 0. (A19)

The Taylor series of the wave number K(ω) at the third-order and the Fourier transform of �ω and �K help to express in an
approximate form, the second term of Eq. (A18) as

j
1

v

∂φ

∂t
= j

1

vg

∂φ

∂t
+ 1

2
K ′′ ∂

2φ

∂t2
− j

1

6
K ′′′ ∂

3φ

∂t3
, (A20)

where

K ′′ = ∂2K

∂ω2
,K ′′′ = ∂3K

∂ω3
,K ′ = 1

vg

= ∂K

∂ω
. (A21)

Then, for the following change of variable:

t ′ = t − 1

vg

z∗

z′ = z∗,
⇒

∂

∂t
→ ∂

∂t ′

∂

∂z∗ → ∂

∂z′ − 1

vg

∂

∂t ′
,

(A22)

Eq. (A19) stands for

− 1

2K

∂2φ

∂z′2 + j
∂φ

∂z′ + 1

2

(
K ′′ − K ′2

K

)
∂2φ

∂t ′2
− j

1

6
K ′′′ ∂

3φ

∂t ′3
+ j

ωα

2K
(1 ± KTc)φ − βω2

2K
(1 ∓ KTc)|φ|2φ ∓ K2T φ

+ α

2K
(1 ± KTc)

∂φ

∂t ′
± j

2K2Tc

ω

∂φ

∂t ′
+ j

ωβ

K
|φ|2(1 ± KTc)

∂φ

∂t ′
= 0, (A23)

where K ′ = ∂K
∂ω

= 1
vg

is the inverse of group-velocity, K ′′ = ∂K ′
∂ω

is the group-velocity dispersion (GVD) coefficient, which can
take the plus and minus signs (±), representing the anomalous and normal dispersion regimes, respectively. The parameter
K ′′′ = ∂K ′ ′

∂ω
is the third-order dispersion (TOD) term. In the fourth term, the attenuation coefficient α is weighted toward the chiral

parameter Tc. The factor to |φ|2φ is the self-phase modulation (SPM) and the term K2Tcφ occurs as an additional correction to the
chirality of the fiber. The expressions at the eighth and ninth positions are the differential gain or loss term and the walk-off effect.
The last term has the physical sense of self-steepening (SS) and is necessary to perform the description of spontaneous waves.

The new variables, namely,

q = ω0
2/3β1/3

(2K0)1/3 φ, ξ = ω0
2/3β1/3

(2K0)1/3 z′, d = −β1/3ω0
2/3

(2k0)4/3 ,

η = αCT√
K ′′ω0

1/3β1/6(2k0)5/6
, τ = ω0

1/3β1/16

√
K ′′(2K0)1/6

t ′,

γ = K ′′′

6

β1/6ω0
1/3

(2K0)1/6(K ′′)3/2 , CT = 1 ∓ TcK,
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� = ω0
1/3α

(2K0)1/3β1/3
, μ = CT �, P = 1

2

(
1 − k′2

K ′′k0

)
,

σ3 = k0Tc(2k0)7/6

√
K ′′ω0

4/3β1/6
, D = K2Tc(2K0)1/3

β1/3ω0
2/3

,

α3 = CT (2K0)5/6β1/6

√
K ′′ω0

2/3K0

, (A24)

allow us to express for q(ξ,τ ) = ψ(ξ,τ ), and Eq. (A23) in the form

d
∂2ψ

∂ξ 2
+ j

∂ψ

∂ξ
+ P

∂2ψ

∂τ 2
− jγ

∂3ψ

∂τ 3
+ jμψ ∓ Dψ − CT |ψ |2ψ + jα3|ψ |2 ∂ψ

∂τ
+ η

∂ψ

∂τ
± jσ3

∂ψ

∂τ
= 0. (A25)

Equation (A25) is the higher-order nonparaxial chiral NLSE and can be used to describe the propagation of the right-hand (+)
and left-hand (−) polarized rogue waves in a higher-order dispersive and nonlinear chiral optical fiber. For d = 0, P = 1

2 , Tc = 0,
CT = 1,D = 0, γ = 0, μ = 0, η = 0, and σ3 = 0, Eq. (A25) stands for the standard NLS equation.

APPENDIX B: THE PARAMETERS OF THE WALK-OFF EFFECT σ (ξ,τ )

σ4(ξ ) = −1

3

d(ξ )2T1(ξ )2
ξ T1(ξ )ξξ

T1(ξ )3γ (ξ )
+ 1

12

d(ξ )2T1(ξ )ξξ
2

T1(ξ )2γ (ξ )
− 1

9

d(ξ )T1(ξ )ξ
( d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

T1(ξ )
, (B1)

σ3(ξ ) = −2

3

d(ξ )2T1(ξ )ξ 2T0(ξ )ξξ

T1(ξ )3γ (ξ )
− 2

3

d(ξ )2T1(ξ )ξT0(ξ )ξ T1(ξ )ξξ

T1(ξ )3γ (ξ )
− 2

3

d(ξ ) T1z
2η(ξ )

T1(ξ )2γ (ξ )
+ 1

3

d(ξ )T1(ξ )ξ
( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )

γ (ξ )T1(ξ )

)
ξ

T1(ξ )

+1

3

dξ T1(ξ )ξξ η(ξ )

γ (ξ )T1(ξ )
+ 1

3

d(ξ )2T1(ξ )ξξT0(ξ )ξξ

T1(ξ )2γ (ξ )
+ 1

9

d(ξ )T0(ξ )ξ
( dξ T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

T1(ξ )
, (B2)

σ2(ξ ) = 2
d(ξ )T1(ξ )2

ξ ρ1(ξ )

T1(ξ )2
− 2

d(ξ )T1(ξ )ξρ1(ξ )ξ
T1(ξ )

− d(ξ )T1(ξ )ξξρ1(ξ )

T1(ξ )
+ 2

3

d(ξ )T0(ξ )ξξ η(ξ )

γ (ξ ) T1(ξ )
− 4

3

d(ξ ) T1(ξ )2
ξ η(ξ )

T1(ξ )2γ (ξ )

+1

3

η(ξ )2

γ (ξ )
+ 1

3

d(ξ )T0(ξ )ξ
( d(ξ ) T0(ξ )ξξ +η(ξ )T1(ξ )

γ (ξ ) T1(ξ )

)
ξ

T1(ξ )
+ 1

3

d(ξ )2T0(ξ )2
ξξ

γ (ξ ) T1(ξ )2
+ 1

12

√
2d(ξ )T1(ξ )ξξ

ν

−4

3

d(ξ )2T1(ξ )ξ T0(ξ )ξT0(ξ )ξξ

T1(ξ )3γ (ξ )
− 1

3

d(ξ )2T0(ξ )2
ξT1(ξ )ξξ

T1(ξ )3γ (ξ )
, (B3)

σ1(ξ ) = −2 η(ξ )ρ1(ξ ) − 2
d(ξ )T1(ξ )ξρ0(ξ )ξ

T1(ξ )
− 2

d(ξ ) T0(ξ )ξξρ1(ξ )

T1(ξ )
+ 1

6

√
2T1(ξ )η(ξ )

ν
− 2

d(ξ )T0(ξ )ξρ1(ξ )ξ
T1(ξ )

+4
d(ξ ) T1(ξ )ξ T0(ξ )ξρ1(ξ )

T1(ξ )2
− 2

3

d(ξ )T0(ξ )2
ξ η(ξ )

T1(ξ )2γ (ξ )
+ 1

6

√
2d(ξ )T0(ξ )ξξ

ν
− 2

3

d(ξ )2T0(ξ )2
ξT0(ξ )ξξ

T1(ξ )3γ (ξ )
− T1(ξ )ξ

T1(ξ )
, (B4)

σ0(ξ ) = −12

√
2γ (ξ )T1(ξ )ρ1(ξ )

ν
− T0(ξ )ξ

T1(ξ )
+ 3 γ (ξ )ρ1(ξ )2 + 2

d(ξ ) T0(ξ )2
ξρ1(ξ )

T1(ξ )2
− 2

d(ξ )T0(ξ )ξρ0(ξ )ξ
T1(ξ )

. (B5)

APPENDIX C: THE PARAMETERS OF THE GAIN OR LOSS TERM μ(ξ,τ )

μ3(ξ ) = −1

3

d(ξ )2T1(ξ )2
ξT1(ξ )ξξ

T1(ξ )3γ (ξ )
+ 1

18
d(ξ )

(
d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξξ

, (C1)

μ2(ξ ) = 1

6

η(ξ )d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )
− 1

3

d(ξ )T1(ξ )2
ξ η(ξ )

T1(ξ )2γ (ξ )
− 2

3

d(ξ )2T1(ξ )ξT0(ξ )ξT1(ξ )ξξ

T1(ξ )3γ (ξ )
− 1

3

d(ξ )2T1(ξ )2
ξT0(ξ )ξξ

T1(ξ )3γ (ξ )

+1

6
d(ξ )

(
d(ξ )T0(ξ )ξξ + η(ξ )T1(ξ )

γ (ξ )T1(ξ )

)
ξξ

, (C2)

μ1(ξ ) = −2

3

d(ξ )T1(ξ )ξT0(ξ )ξ η(ξ )

T1(ξ )2γ (ξ )
+ 1

3

η(ξ )d(ξ )T0(ξ )ξξ

γ (ξ )T1(ξ )
+ 1

3

η(ξ )2

γ (ξ )
− 2

3

d(ξ )2T1(ξ )ξT0(ξ )ξ T0(ξ )ξξ

T1(ξ )3γ (ξ )

−1

3

d(ξ )2T0(ξ )2
ξT1(ξ )ξξ

T1(ξ )3γ (ξ )
+ 1

12

√
2d(ξ )T1(ξ )ξξ

ν
− d(ξ )ρ1(ξ )ξξ , (C3)
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μ0(ξ ) = −1

3

d(ξ )T0(ξ )2
ξ η(ξ )

γ (ξ )T1(ξ )2
− 1

3

d(ξ )2T0(ξ )2
ξT0(ξ )ξξ

γ (ξ )T1(ξ )3

+ 1

12

T1(ξ )
√

2η(ξ )

ν
− η(ξ )ρ1(ξ ) + 1

12

√
2d(ξ )T0(ξ )ξξ

ν
− d(ξ )ρ0(ξ )ξξ . (C4)

APPENDIX D: THE PARAMETERS OF THE LINEAR BIREFRINGENCE D(ξ,τ )

D6(ξ ) = −
d(ξ )2T1(ξ )ξ T1(ξ )ξξ

d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ ) ξ

54 γ (ξ )T1(ξ )2
− d(ξ )3T1(ξ )3

ξξ

216 γ (ξ )2T1(ξ )3
+ 1

36

d(ξ )3T1(ξ )2
ξT1(ξ )2

ξξ

T1(ξ )4γ (ξ )2
, (D1)

D5(ξ ) = 1

9

d(ξ )2T1(ξ )2
ξT1(ξ )ξξ η(ξ )

T1(ξ )3γ (ξ )2
−

d(ξ )2T0(ξ )ξT1(ξ )ξξ

( d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

54 γ (ξ )T1(ξ )2

− 1

18

d(ξ )2T1(ξ )ξT1(ξ )ξξ ( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )
γ (ξ )T1(ξ ) )ξ

γ (ξ )T1(ξ )2
−

d(ξ )2T1(ξ )ξ T0(ξ )ξξ

( d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

54 γ (ξ )T1(ξ )2

+ 1

18

d(ξ )3T1(ξ )ξT0(ξ )ξ T1(ξ )2
ξξ

T1(ξ )4γ (ξ )2
+ 1

9

d(ξ )3T1(ξ )2
ξT1(ξ )ξξ T0(ξ )ξξ

T1(ξ )4γ (ξ )2 − 1

36

d(ξ )2T1(ξ )2
ξξ η(ξ )

γ (ξ )2T1(ξ )2

− 1

27

d(ξ )T1(ξ )ξ η(ξ )
( d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

γ (ξ )T1(ξ )
− 1

36

d(ξ )3T1(ξ )2
ξξ T0(ξ )ξξ

T1(ξ )3γ (ξ )2
, (D2)

D4(ξ ) = −1

3

d(ξ )2T1(ξ )2
ξ T1(ξ )ξξρ1(ξ )

T1(ξ )3γ (ξ )
+ 2

9

d(ξ )2T1(ξ )2
ξ T0(ξ )ξξ η(ξ )

T1(ξ )3γ (ξ )2

− 1

18

d(ξ )2T0(ξ )ξT1(ξ )ξξ

( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )
γ (ξ )T1(ξ )

)
ξ

γ (ξ )T1(ξ )2
+ 1

3

d(ξ )2T1(ξ )ξT1(ξ )ξξρ1(ξ )ξ
γ (ξ )T1(ξ )2

−1

9

d(ξ )2T1(ξ )ξ T0(ξ )ξξ

( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )
γ (ξ )T1(ξ )

)
ξ

γ (ξ )T1(ξ )2
+ 1

36

d(ξ )3T0(ξ )2
ξT1(ξ )2

ξξ

T1(ξ )4γ (ξ )2
− 1

9

d(ξ )2T1(ξ )ξξ T0(ξ )ξξ η(ξ )

γ (ξ )2T1(ξ )2

+1

9

d(ξ )T1(ξ )ξρ1(ξ )
( d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

T1(ξ )
+ 1

9

d(ξ )T1(ξ )2
ξ η(ξ )2

γ (ξ )2T1(ξ )2
−

√
2d(ξ )2T1(ξ )2

ξξ

144 ν γ (ξ )T1(ξ )

+2

9

d(ξ )3T1(ξ )ξ T0(ξ )ξT1(ξ )ξξT0(ξ )ξξ

T1(ξ )4γ (ξ )2
+ 2

9

d(ξ )2T1(ξ )ξT0(ξ )ξ T1(ξ )ξξ η(ξ )

T1(ξ )3γ (ξ )2

+1

9

d(ξ )3T1(ξ )2
ξT0(ξ )2

ξξ

T1(ξ )4γ (ξ )2
+ 1

12

d(ξ )2T1(ξ )2
ξξρ1(ξ )

γ (ξ )T1(ξ )2
− 1

18

d(ξ )3T1(ξ )ξξ T0(ξ )2
ξξ

T1(ξ )3γ (ξ )2
− 1

18

d(ξ )T1(ξ )ξξ η(ξ )2

γ (ξ )2T1(ξ )

−1

9

d(ξ )T1(ξ )ξ η(ξ )
( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )

γ (ξ )T1(ξ )

)
ξ

γ (ξ )T1(ξ )
− 1

27

d(ξ )η(ξ )T0(ξ )ξ
( d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )

)
ξ

γ (ξ )T1(ξ )
, (D3)

D3(ξ ) = 2

9

d(ξ )3T1(ξ )ξT0(ξ )ξT0(ξ )2
ξξ

T1(ξ )4γ (ξ )2
− 1

9

d(ξ )T0(ξ )ξ η(ξ )
( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )

γ (ξ )T1(ξ )

)
ξ

γ (ξ )T1(ξ )

+2

9

d(ξ )T1(ξ )ξT0(ξ )ξ η(ξ )2

T1(ξ )2γ (ξ )2
+ 1

9

d(ξ )T0(ξ )ξρ1(ξ ) d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ ) ξ

T1(ξ )
− 1

9

d(ξ )2T0(ξ )2
ξξ η(ξ )

T1(ξ )2γ (ξ )2
+ 1

6

T1(ξ )ξ d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )2

−d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ ) ξ

− 1

9

d(ξ )T0(ξ )ξξ η(ξ )2

γ (ξ )2T1(ξ )
− 1

27

η(ξ )3

γ (ξ )2
+ 1

3

d(ξ )2T0(ξ )ξT1(ξ )ξξρ1(ξ )ξ
γ (ξ )T1(ξ )2

+ 1

3

d(ξ )2T1(ξ )ξT1(ξ )ξξρ0(ξ )ξ
γ (ξ )T1(ξ )2
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3

d(ξ )2T1(ξ )ξ T0(ξ )ξξρ1(ξ )ξ
γ (ξ )T1(ξ )2

−
√

2d(ξ )T1(ξ )ξξ η(ξ )

648 γ (ξ )ν
− 2

3

d(ξ )T1(ξ )2
ξ η(ξ )ρ1(ξ )

γ (ξ )T1(ξ )2
+ 4

9

d(ξ )2T1(ξ )ξ T0(ξ )ξT0(ξ )ξξ η(ξ )

T1(ξ )3γ (ξ )2
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3

d(ξ )2T1(ξ )ξ T0(ξ )ξT1(ξ )ξξρ1(ξ )

T1(ξ )3γ (ξ )
− 1

36

√
2d(ξ )2T1(ξ )ξξ T0(ξ )ξξ

γ (ξ )T1(ξ )ν
+ 1

3

T1(ξ )ξ d(ξ )ρ1(ξ )
( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )

γ (ξ )T1(ξ )

)
ξ

T1(ξ )
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−2
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d(ξ )2T1(ξ )2
ξT0(ξ )ξξρ1(ξ )

T1(ξ )3γ (ξ )
+ 1
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d(ξ )2T0(ξ )2
ξ T1(ξ )ξξ η(ξ )

T1(ξ )3γ (ξ )2
+ 1
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d(ξ )2T1(ξ )ξξT0(ξ )ξξρ1(ξ )

γ (ξ )T1(ξ )2

+1

3

d(ξ )T1(ξ )ξξ η(ξ )ρ1(ξ )

γ (ξ )T1(ξ )
+ 1

9

d(ξ )3T0(ξ )2
ξ T1(ξ )ξξ T0(ξ )ξξ

T1(ξ )4γ (ξ )2
+ 2

3

T1(ξ )ξ d(ξ )η(ξ )ρ1(ξ )ξ
γ (ξ )T1(ξ )

−1

9

d(ξ )2T0(ξ )ξT0(ξ )ξξ

( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )
γ (ξ )T1(ξ )

)
ξ

γ (ξ )T1(ξ )2
− 1

27

d(ξ )3T0(ξ )3
ξξ

T1(ξ )3γ (ξ )2
− 1

18

d(ξ )T1(ξ )ξξ

γ (ξ )T1(ξ )
, (D4)

D2(ξ ) = 1
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η(ξ )2ρ1(ξ )

γ (ξ )
+ 1
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d(ξ )T0(ξ )ξρ1(ξ )
( d(ξ )T0(ξ )ξξ +η(ξ )T1(ξ )

γ (ξ )T1(ξ )
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ξ

T1(ξ )

+ 2

3

d(ξ )T0(ξ )ξξ η(ξ )ρ1(ξ )
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9

d(ξ )2T0(ξ )2
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, (D5)

D1(ξ ) = 1
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D0(ξ ) = −2
d(ξ )T0(ξ )ξρ1(ξ )ρ0(ξ )ξ

T1(ξ )
− 1
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APPENDIX E: THE FINITE DIFFERENCE FORMULAE FOR THE DERIVATIVES[
∂2u(ξ,τ )

∂ξ 2

]
ξ=n�ξ

= un+1(τ ) − 2un(τ ) + un−1(τ )

�ξ 2
+ 0(�ξ 2),

(E1)[
∂u(ξ,τ )

∂ξ

]
ξ=n�ξ

= un+1(τ ) − un−1(τ )

2�ξ
+ 0(�ξ 2),

[
∂2v(ξ,τ )

∂ξ 2

]
ξ=n�ξ

= vn+1(τ ) − 2vn(τ ) + vn−1(τ )

�ξ 2
+ 0(�ξ 2),

(E2)[
∂v(ξ,τ )

∂ξ

]
ξ=n�ξ

= vn+1(τ ) − vn−1(τ )

2�ξ
+ 0(�ξ 2),
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where

un(τ ) ≡ u(n�ξ,τ )

un−1(τ ) ≡ u((n − 1)�ξ,τ ) (E3)

un+1(τ ) ≡ f (un(τ ),un−1(τ ),vn(τ ))

vn(τ ) ≡ v(n�ξ,τ )

vn−1(τ ) ≡ v((n − 1)�ξ,τ ) (E4)

vn+1(τ ) ≡ f (vn(τ ),vn−1(τ ),un(τ ))
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Abstract We report the contrast of optical activ-
ity and properties of nonparaxial optical rogue waves
for the higher-order nonparaxial chiral nonlinear
Schrödinger (NLS) equation. The latter describes the
propagation of ultrashort optical pulses in chiral optical
fibers. Both first- and second-order rogue wave solu-
tions are investigated analytically by the modified Dar-
boux transformation (MDT) and numerically by one
pseudo-spectral method. The interplay of chiral mate-
rials on rogue wave propagation is elucidated, and the
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results can be applied on optical communication and in
others physical systems.
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1 Introduction

The term chirality [1] is a well-known concept of great
interest in chemistry, biology, pharmacology and opti-
cal fields [2,3]. In the context of chemistry, chirality
refers to molecules that lack mirror symmetry. One
of the most universally known examples is the human
hands. In fact, no matter how the two hands are ori-
ented, it is impossible for the both hands to be coin-
cide through translations and rotations. In the context
of optics, chirality refers to optical activity which is the
ability to rotate plane polarized light. The observe rota-
tion of this plane polarized light can be directed to the
right hand that is a clockwise rotation, called dextro-
rotatory, or to the left hand that is a counterclockwise
rotation, called levorotatory. As a consequence, enan-
tiomers or optical isomers are designated in the litera-
ture as right- and left-handed [4]. Therefore, chirality
can be defined as fundamental property of molecules
and materials that leads to optical activity effects [5].

Among chiral materials, chiral optical fibers are
materials of crucial importance. They give rise to opti-
cal activity effects such as optical rotation and circu-
lar dichroism which are optical characterization tech-
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niques of molecules [2]. In fact, these effects are used
to investigate the structures of molecules and to eluci-
date the secondary structure of biomolecules. Optical
activity has attracted and inspired great effort in the
developing of active photonic chiral metamaterials [6].
These materials are designated to deliver an unusual
electromagnetic response, in spite of the fact that opti-
cal activity is a linear effect.

Optical activity effects have been found in both
linear and nonlinear optics [7,8]. In nonlinear opti-
cal fields, other characterization techniques like the
second-harmonic generation circular dichroism (SHG-
CD) and the second-harmonic generation optical rota-
tory dispersion (SHG-ORD) were undertaken by T.
Verbiest et al. [9]. Later, A. Bruyere et al. [10] have
studied the formation of chiral supramolecular aggre-
gates at an air–water interface with the SHG technique.
Furthermore, Huttunen et al. [11] have shown that the
third-harmonic generation circular dichroism (THG-
CD) effects could occur in biologicalmaterials. Briefly,
many works have been done in chiral metamaterials
[12], nanomaterials [13,14] and photonic crystals [15].

In view of great scientific importance of chiral
molecules in life science and pharmaceutical industries
[16], we mainly focus our interest on the impact of chi-
ral materials like chiral optical fibers in optical com-
munication. Several nonlinear phenomena have been
studied in chiral media [17–20] with the objectives to
control the chiral level and protect organic chiral mate-
rials fromdamage during the processing temperature of
silica. Therefore, controllability of spontaneous waves
has been performed in both theoretical and experimen-
tal approaches to investigate the interesting phenomena
of rogue waves in optical fibers [21].

Rogue wave phenomena can be described in both
physical and mathematical aspects. In its physical
aspect, three main features have been set to qualify a
rogue wave phenomenon. First, the wave events should
be twice more higher than the wave amplitude of the
significant wave height (SWH) with extremely large
amplitude. Secondly, they should appear and disap-
pear unpredictably. This qualifier is equivalent to their
unexpectedly reappearance and disappearance. Lastly,
rogue wave events should arise more frequently and
their probability distribution function (PDF) should
display an L-shaped distribution of amplitude [22–24].

In its mathematical aspect, rogue wave is an exact
rational solution obtained from the integrable scalar
nonlinear Schrödinger (NLS) equationwith finite back-

ground, called Peregrine soliton [25]. The Peregrine
soliton (PS) is the mathematical rogue wave prototype
in self-focusing regime due to its localization in both
space and time, hence its denomination usual rogue
wave. In the same aspect, other rogue wave solutions
with finite backgrounds called unusual rogue waves
were obtained from the focusing standard NLS equa-
tion. On the one hand, we have the Kuznetsov–Ma (K–
M) solitons [26] which have the peculiarity of being
localized in temporal dimension with periodicity along
the propagation direction. On the other hand, we have
the Akhmediev Breathers (ABs) [27] which have the
peculiarity of being localized along the propagation
direction with periodicity in temporal dimension [28].

The standard NLS equation is known as the uni-
versal model to describe rogue wave phenomenon in
oceans [29], optical fibers [30–34], Bose–Einstein con-
densation [35,36], in laser–plasma interaction [37] and
in econophysics [38]. In practice, the NLS equation is
poetical to some realistic problems like the transmis-
sion of ultrashort pulses of the order of subpicosec-
ond and femtosecond frequencies in highly disper-
sive optical fibers. Therefore, the NLS equation has
been extended to take into account the third-order dis-
persion (TOD) and self-steepening (SS) nonlinearity
[39]. Thus, the integrable Hirota equation [40] has
been derived, even extended to take into account other
nonlinear effects [41–44]. One of these effects is the
nonparaxiality which arises in the miniaturization of
devices involving multiplexed beams [45].

In this work, one focuses the attention on the con-
trast of optical activity to elucidate the interplay of
chiral optical fiber on rogue wave propagation. This
investigation is based on an extended integrable Hirota
equationwith linear and nonlinear effects, namely, non-
paraxial chiral NLS equation. The ingenious analytical
technique ofDarboux transformation [46–49] is used to
derive the rogue wave solutions, and a pseudo-spectral
technique [50] is also used to highlighting the impor-
tance of this study on wave propagation in chiral mate-
rials.

The paper is organized as follows. In Sec. 2, the
model is presented with its integrability conditions
and the integrability constraints are derived through
a direct ansatz. In Sec. 3, the first- and second-
order roguewave solutions are investigated analytically
by the modified Darboux transformation (MDT) and
numerically by one pseudo-spectral method, namely,
difference-differential equation method. In Sec. 4, the
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contrast of optical activity is revealed throughout the
profiles of rogue waves and the interplay of chiral
materials is elucidated. In Sec. 5, the outcomes are
summarized.

2 Model and integrability constraints

To reveal the contrast of optical activity and elucidate
the interplayof chiral optical fibers on roguewaveprop-
agation, one considers an extended NLS equation with
linear and nonlinear effects [51]

dψξξ + iψξ + Pψττ − iγψτττ + r1 (iμ ∓ D) ψ

−C |ψ |2ψ + iα3|ψ |2ψτ + r2 (η ± iσ3) ψτ = 0,

(1)

where ξ and τ (z and t) are the scaled (unscaled) coordi-
nates in the propagation direction and temporal dimen-
sion, respectively. ψ (ξ, τ ) is the envelope field of the
forward and backward components of the waves. In
regard of the derivation of the above model (Eq. (1))
in reference [51], the parameters r1 and r2 are equal to
unity.Nevertheless, these parameters can be different in
these cases. In the absence of either the linear gain/loss
(μ) or linear birefringence (D), on the one hand, and
in the absence of either the differential gain/loss (η)
or linear group velocity (σ3), on the other hand, the
parameters r1 and r2, respectively, can be different to
the unity depending now to the term in factor to them.
Moreover, these parameters depend in major cases, to
the physical system. Thus, for r1 = r2 = 1, the rela-
tions between the scaled and unscaled variables stand
for

τ = ω0
1/3β1/6√

K ′′(2K0)
1/6 t

′, ξ = ω0
2/3β1/3

(2K0)
1/3 z

′ = z
LD

,

LD = (2K0)
1/3(1−K0

2Tc2
)

β1/3ω0
2/3 = −(

1−K0
2Tc2

)

2K0d
,

ψ (ξ, τ ) = ω0
2/3β1/3

(2K0)
1/3 φ = −2K0dφ,

φ = �R,L = Ex ± i Ey,

⎧
⎨

⎩

Ex = Ex (z, t)

Ey = Ey (z, t)
,

⎧
⎪⎨

⎪⎩

t ′ = t − 1
vg
z∗

z′ = z∗
, z∗ = z(

1−K0
2Tc2

) ,

(2)

where �R,L are the right(R)- and left(L)-handed of
wave components. Then, the parameters of Eq. (1) are

d = −β1/3ω0
2/3

(2k0)4/3
, η = αC√

K ′′ω0
1/3β1/6(2k0)5/6

,

γ = K ′′′
6

β1/6ω0
1/3

(2K0)
1/6(K ′′)3/2 , C = 1 ± K0Tc

μ = C,  = ω0
1/3α

(2K0)
1/3β1/3 ,

P = 1
2

(
1 − k′2

K ′′k0
)

, σ3 = k0Tc(2k0)7/6√
K ′′ω0

4/3β1/6 ,

D = K0
2Tc(2K0)

1/3

β1/3ω0
2/3 , α3 = C(2K0)

5/6β1/6√
K ′′ω0

2/3K0
,

(3)

with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K ′ = ∂K
∂ω

= 1
vg

K ′′ = ∂K ′
∂ω

→ GV D

K ′′′ = ∂K ′′
∂ω

→ T OD

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K0 = ω0
v

v2 = 1
μ0ε0

β = μ0ε2

α = μ0σ

, (4)

in which LD is the diffraction length of the beam, α,
the attenuation coefficient, σ , the electrical conductiv-
ity, ε0, the linear permittivity, ε2, the nonlinear permit-
tivity, μ0, the permeability, Tc, chiral parameter of the
optical fiber, ω0, the frequency of the wave, K0, the
wave number, v, the light velocity, and φ, the complex
envelope of the optical field in the chiral fiber. Then,
coefficientsd, P ,γ ,μ, D,C ,α3,η andσ3 are nonparax-
ial, group velocity dispersion (GVD), third-order dis-
persion (TOD), linear gain or loss term, linear birefrin-
gence, self-phase modulation (SPM), self-steepening
(SS), differential gain or loss and linear group velocity,
respectively.

The envelope field ψ (ξ, τ ) contains both forward
and backward propagating components in such a way
that the change from the unscaled to scaled longitudinal
coordinate of the oscillation of the field is given by

exp {−i K±z} = exp

{
i

ξ

2d

(
1 − K0

2Tc
2
)}

, (5)

where K± = K = K0. It can be seen from relation (5)
that apart from thewave number K0, the scaled longitu-
dinal coordinate is related to two important parameters.
That are the nonparaxiality coefficient (d) and the chi-
ral parameter (Tc) which will improve the description
of waves propagating in chiral meduim. Equation (1)
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contains other cases ofNLS equation. If one sets d = 0,
P = 1

2 , γ = 0, μ = 0, D = 0, α3 = 0, η = 0 and
σ3 = 0, Eq. (1) becomes the standard NLS equation in
the focusing regime forC = −1 and defocusing regime
for C = 1. If in addition to these conditions, d �= 0,
Eq. (1) stands for the nonparaxial NLS equation. The
integrable Hirota equation is also obtained for d = 0,
P = 1, γ = 2

√
2, μ = 0, D = 0, α3 = −6

√
2, η = 0,

σ3 = 0 and C = −1. Equation (1) has been found
as a nonparaxial chiral NLS equation in our previous
work [51]. This study is based now on the scalar form
with constant coefficients. In this case, instead of Jaco-
bian elliptic functions, parameters of the system will
be taken as polynomial functions.

A higher-order NLS equation is eminently suitable
to describe realistic problems when it satisfies the inte-
grability and controllability conditions. Throughout the
term in factor to the SS coefficient α3, it can be seen
that Eq. (1) verifies the condition of controllability
of higher-order NLS equations [52]. The integrabil-
ity of the model is satisfied for γ = α3

6C , P = 1
2 ,

r1 = r2 = α3
2C and d = 5α3

3C . If α3 = 0, then Eq. (1)
is reduced to the standard NLS equation. In the case
where r1 = r2 = 1, let us find the integrability con-
straints of the model by means of similarity reduction
method.Thus,weuse the envelopefiled in the form [52]

ψ (ξ, τ ) = A(ξ)V [Z(ξ), T (ξ, τ )] exp {iρ (ξ, τ )} , (6)

to find the integrability conditions of the parameters
related to the envelope field in which A(ξ) is the ampli-
tude, Z(ξ), the effective propagation distance, T (ξ, τ ),
the similitude variable andV [Z(ξ), T (ξ, τ )], the com-
plex field. The variableρ (ξ, τ ) is the phase of thewave.
The substitution of Eq. (6) into Eq. (1) gives a coupled
system of partial differential equations with constant
coefficients

d(AξξV + 2Aξ ZξVZ + 2Aξ TξVT + 2AZξ TξVZT

+ AZξξVZ + ATξξVT + AZξ
2VZZ

+ ATξ
2VTT − Aρξ

2V )

− AVρξ + P(AVTT Tτ
2 + AVT Tττ − AVρτ

2)

+ γ (3AVT Tττ ρτ + 3AVT Tτ ρττ + 3AVTT Tτ
2ρτ

+ AVρτττ − AVρτ
3) ∓ DAV − CA2|V |2AV

−α3A
2|V |2AVρτ + ηATτ VT ∓ σ3AVρτ = 0, (7)

d(AVρξξ + 2Aξ ρξV + 2AZξ ρξVZ
+ 2Aρξ TξVT ) + AξV

+ AVZ Zξ + AVT Tξ + P(AVρττ + 2AVT Tτ ρτ )

− γ (AVT Tτττ + 3AVTT Tτ Tττ + AVTT T Tτ
3

− 3AVT Tτ ρτ
2 − 3AVρττ ρτ ) + μAV

+α3A
2|V |2AVT Tτ + ηAVρτ ± σ3ATτ VT = 0,

(8)

where the scripts of differential equations are simplified
as A (ξ) = A, Z (ξ) = Z , T (ξ, τ ) = T , ρ (ξ, τ ) = ρ

and V [Z(ξ), T (ξ, τ )] = V . It is of crucial interest to
reduceEq. (1) into the integrableHirota equationwhich
has a well-known integrability conditions [53], satisfy-
ing the complex field of the ansatz V [Z(ξ), T (ξ, τ )]

i
∂V

∂Z
= −∂2V

∂T 2 + G|V |2V

+ 2
√
2iν

(
∂3V

∂T 3 + 3|V |2 ∂V

∂T

)
. (9)

Thus, the coupled system can be reduced as follows

γ TτTττ = 0, (10)

Tξ + 2dTτ ρτ + 2PTτ ρτ ± σ3Tτ

−γ
(
Tτττ − 3Tτ ρτ

2
)

= 0, (11)

Aξ + A(dρξξ + ρττ P + 3γ ρττ ρτ + μ + ηρτ )

= 0, (12)

γ Tτ
3 + 2

√
2νZξ = 0, (13)

AξV + AZξVZ + ATξVT = 0, (14)

α3A
2Tτ − 6

√
2νZξ = 0, (15)

dTξξ + PTττ + 3γ (Tττ ρτ + Tτ ρττ ) + ηTτ = 0, (16)

Zξ + dTξ
2 + PTτ

2 + 3γ ρτTτ
2 = 0, (17)

ρξ + dρξ
2 + Pρτ

2

+γ
(
ρτ

3 − ρτττ

)
± σ3ρτ ± D = 0, (18)

GZξ + A2 (C + α3ρτ ) = 0, (19)

AξξV + 2Aξ ZξVZ + 2AξTξVT + 2AZξTξVZT

+ AZξξVZ + AZξ
2VZZ = 0. (20)

From this preliminary method of rogue wave finding,
the constraints are deduced from the differential equa-
tions of which the simplified forms stand from Eq. (10)
to Eq. (20), respectively, as follows: −3AVTT �= 0,
AVT �= 0, V �= 0, −AVTTT �= 0, 2dρξ �= 0,
A|V |2VT �= 0, AVT �= 0, AVTT �= 0, −AV �= 0,
−A|V |2V �= 0 and d �= 0. These conditions play an
important role in the sense that they are necessary to
find the integrability constants of parameters related to
the envelope field.
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3 Analytical and numerical rogue wave solutions

To construct the analytical rogue wave solutions, one
firstly finds the parameters of the envelopefield by solv-
ing the above differential equations. The integration
is made from the simplest differential equation to the
highly complex one. In doing so, Eq. (10) yields for
γ (ξ) �= 0 and TτTττ = 0 to the similarity variable

T (ξ, τ ) = T1(ξ)τ + T0(ξ), (21)

where the arbitrary functions T1(ξ) and T0(ξ) should be
defined. One notices that Tττ = 0 is the second deriva-
tive condition of the similarity variable in the temporal
dimension. Equation (13) gives the effective propaga-
tion distance

Z(ξ) = −
√
2γ

4ν

ξ∫

0

T1(s)
3ds. (22)

The substitution of expressions (21) and (22) into Eq.
(15) tends to

A(ξ) =
√

−3γ T1(ξ)2

α3
, (23)

with α3 < 0 and γ > 0. Then, the substitution of
expressions (22) and (23) into Eq. (19) gives the phase
of the envelope field which can be written as

ρ (ξ, τ ) = −
(
GT1(ξ)

6
√
2ν

+ C

α3

)
τ + ρ0(ξ), (24)

where ρ0(ξ) should be defined by taking into account,
the second derivative condition in the temporal dimen-
sion of the phase, that is, ρττ = 0. Through relations
(21) and (24), we find from Eq. (16) the second deriva-
tive condition in the propagation direction of the simi-
larity variable

Tξξ = −ηT1(ξ)

d
. (25)

The substitution of relations (21) and (24) in Eqs.
(11) and (17) shows that the first derivative of the simi-
larity variable is independent of the temporal variable τ .
This means that T1ξ = 0 and T0ξ = Tξ �= 0. Therefore,
T1(ξ) must be a constant. Thus, the arbitrary function
T0(ξ) deduced from Eq. (25) becomes

T0(ξ) = −ηT1(ξ)

2d
ξ2. (26)

The substitution of relations (21), (24) and (23) in Eqs.
(12) and (18) shows that the first derivative of the phase

is independent of the temporal variable τ . This also
means that ρ1ξ = 0 and ρ0ξ = ρξ �= 0. This implies

that ρ1(ξ) = −
(
GT1(ξ)

6
√
2ν

+ C
α3

)
is a constant. This affir-

mation is true aswe have shown that T1(ξ) is a constant.
Therefore, the second derivative condition of the phase
in the propagation direction yields

ρξξ = 1

d

[
η

(
GT1(ξ)

6
√
2ν

+ C

α3

)
− μ

]
. (27)

From this second derivative condition, we deduce the
arbitrary function of the phase

ρ0(ξ) = 1

2d

[
η

(
GT1(ξ)

6
√
2ν

+ C

α3

)
− μ

]
ξ2. (28)

By choosing the arbitrary constant T1(ξ) = 2, the
parameters are summarized as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (ξ, τ ) = 2τ − η
d ξ2,

Z(ξ) = −2
√
2γ

ν
ξ,

A(ξ) =
(−12γ

α3

) 1
2
,

{
γ > 0,
α3 < 0,

ρ (ξ, τ ) = −
( √

2G
6ν + C

α3

)
τ + 1

2d

[
η

(√
2G
6ν + C

α3

)
− μ

]
ξ2.

(29)

In view of great success of the Peregrine soli-
ton in the modeling of realistic rogue wave, we con-
struct the rogue wave solutions through the modified
Darboux transformation method [53]. From the well-
known rogue wave solutions of the integrable Hirota
equation [53], we deduce the first- and second order
of the complex field V [Z(ξ), T (ξ, τ )] which is valid
for G = −1 for rogue wave finding. Therefore, the
different expressions of the complex field yield

V1 [Z(ξ), T (ξ, τ )]

=
[
1 − G1 + i H1

D1

]
exp {i Z(ξ)} , (30)

where

G1 = 4, H1 = 8Z(ξ),

D1 = 1 +
[√

2T (ξ, τ ) + 12νZ(ξ)
]2 + 4Z(ξ)2.

(31)

and

V2 [Z(ξ), T (ξ, τ )]

=
[
1 + G2 + i Z(ξ)H2

D2

]
exp i {Z(ξ)} . (32)

where G2, H2 and D2 are given by the relations
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G2 = − 48T 4 − 1152
√
2νZT 3

− 44T 2[4Z2
(
36ν2 + 1

)
+ 1]

− 576
√
2νZT

[
12Z2

(
12ν2 + 1

)
+ 7

]
− 192Z4

×
[
216

(
6ν4 + ν2

)
+ 5

]
− 864Z2

(
44ν2 + 1

)
− 36,

H2 = − 96T 4 − 2304
√
2νZT 3

− 96T 2[4Z2
(
108ν2 + 1

)

− 3] − 1152
√
2νZT

[
4Z2

(
36ν2 + 1

)]

− 384Z4
(
36ν2 + 1

)2

− 192Z2
(
180ν2 + 1

)
+ 360,

D2 = 8T 6 + 288
√
2νZT 5

− 432Z4
(
624ν4 − 40ν2 − 1

)

+ 36Z2
(
556ν2 + 11

)
+ 9

+ 64Z6
(
36ν2 + 1

)3 + 96
√
2

× ZT 3
[
12Z2

(
60ν2 + 1

)
− 1

]

+ 12T 4[4Z2
(
180ν2 + 1

)
+ 1]

+ 6T 2[16Z4
[
216ν2

(
30ν2 + 1

)
− 1

]

− 24Z2
(
60ν2 + 1

)
+ 9]

+ 72
√
2νZT [16Z4

(
36ν2 + 1

)

+ 8Z2
(
1 − 108ν2

)
+ 17].

(33)

Then, collecting the founded variables with the above
solutions of complex field together, one obtains the
first- and second-order rational solutions, related to a
particular solution of Eq. (1), respectively, in the form

ψ1 = A(ξ)

[
1 − G1 + i H1

D1

]
exp {i Z(ξ)

+iρ (ξ, τ )} , (34)

ψ2 = A(ξ)

[
1 + G2 + i Z(ξ)H2

D2

]
exp {i Z(ξ)

+iρ (ξ, τ )} . (35)

where parameters are given in relations (29), (30), (31),
(32) and (33). These first- and second-order rational
solutions are used to describe the propagation of non-
paraxial optical rogue waves in chiral materials. The
second-order rational solution is due to the collision
between ultrashort pulses in the optical fiber. The par-
ticularity of these solutions is the simultaneous control-
lability of their amplitudes through the above param-
eters, which can be used to manage their amplitudes

and shapes. As the nonparaxiality, TOD, SS, SPM and
differential gain or loss terms step in the system, they
can therefore provide amore convenient and controlled
environment for further applications in optical commu-
nication.

The methodology of the numerical integration is
based on a pseudo-spectralmethod, namely, difference-
differential equation method. The basic of the pseudo-
spectral method is to use the discrete Fourier trans-
form to evaluate the spatial derivative of the model.
Nevertheless, within the context of optical fiber, these
derivatives depend on coordinates of the propagation
direction; those areψξξ andψξ which stand for the non-
paraxial and propagation terms, respectively. The using
of their finite difference formulae with errors of second
order gives the difference-differential equation below
related to the model (Eq. (1)) for ψ (ξ, τ ) = u (ξ, τ )

un+1(τ ) = 1

2d + i�ξ
[(4d − 2P�ξ2

∂2

∂τ 2

+ 2iγ�ξ2
∂3

∂τ 3

− 2iμ�ξ2 ± 2�ξ2D + 2C�ξ2|un(τ )|2

− 2iα3�ξ2|un(τ )|2 ∂

∂τ

− 2�ξ2 (η ± iσ)
∂

∂τ
)un(τ )

− (2d − i�ξ) un−1(τ )], (36)

with
⎧
⎨

⎩

un(τ ) ≡ u (n�ξ, τ)

un−1(τ ) ≡ u ((n − 1)�ξ, τ )

un+1(τ ) ≡ f (un(τ ), un−1(τ )) .

(37)

Equation (36) defines the explicit algorithm in the dis-
cretized domain in which the propagation variable ξ

tends to n�ξ . Then, the transverse differential opera-
tors ∂2/∂τ 2, ∂3/∂τ 3 and ∂/∂τ are computed efficiently
and accurately by the fast Fourier transforms (FFTs).
The accuracy and convergence of this method have
been demonstrated in the literature [50]. This method
has the advantage of being explicit, means, simple
implementation and low computation of the model and
then its flexibility in the modeling of nonparaxial NLS
equation with higher-order nonlinear effects. In this
work, the first- and second-order analytical solutions
are used as the initial conditions for the numerical sim-
ulation. Therefore, the implementation of the index n
in Eq. (36), in view of relation (37), gives the numerical
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solutions of optical rogue wave propagating in chiral
materials.

4 Contrast of
optical activity and interplay of chiral materials

The representation of analytical and numerical solu-
tions of optical rogue waves constructed in previous
section is of special interest, in the sense that their pro-
files will reveal the contrast of optical activity. It can be
seen from relation (3) that, among coefficients which
are functions of chiral parameter (Tc), η, C and μ are
two component chiral parameters, whereas D and σ3
are one component chiral parameters. Therefore, they
can be chosen as follows
⎧
⎨

⎩

α3 = −α0 (1 ± K0Tc)

α0 = 4,

{
α3+ = −6
α3− = −2

,

⎧
⎨

⎩

η = η0 (1 ± K0Tc)

η0 = 2
3 ,

{
η+ = 1
η− = 1

3

,

⎧
⎨

⎩

C = C0 (1 ± K0Tc)

C0 = − 2
3 ,

{
C+ = −1
C− = − 1

3

,

⎧
⎨

⎩

μ = μ0 (1 ± K0Tc)

μ0 = 0.2,

{
μ+ = 0.3
μ− = 0.1

,

(38)

where K0Tc = 0.5 and with γ = 0.2, G = −1,
P = 0.5, D = 0.06 and σ3 = 0.1. To plot the first- and
second-order analytical rogue wave solutions, one uses
a MATLAB program in which the coordinates ξ and τ

are bounded in the interval [−10, 10]. Thus, the first-
order rogue wave solutions depicted in Figs. 1, 2 and 3
are computed fromEqs. (29), (31), (34) and (38). Then,
the second-order rogue wave solutions represented in
Figs. 4, 5 and 6 are computed from Eq. (29), (33), (35)
and (38). Each figure is obtained for a different value
of parameters d and ν as shown in figure captions. The
guideline techniques given above are of special interest
for the numerical simulation in Figs. 7 and 8. The dif-
ferential operators are expressed in the spectral domain
through the FFTs in which the spectral parameter k is
defined for N = 128 iterations with the given length
L = 40. Therefore, the implementation of n in Eq. (36)
is done for 102 iterations in the propagation direction ξ

and where �ξ = 0.05. According to the above param-
eters, the analytical and numerical representations are
illustrated.

Due to the electromagnetic nature of chiral medium,
there are two coupled characteristic waves in chiral
optical fibers. This property of chiral medium is there-
fore observed in analytical and numerical representa-
tions throughout the LCP and RCP components. The
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(b)

Fig. 1 Plot (a) and contour plot (b) of the first-order rogue wave
solution: Eq. (34), with d = 10 and ν = 0.6
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Fig. 2 3D representation (a) and contour plot (b) of the first-
order analytical rogue wave amplitude of Eq. (34), for d = 0.5
and ν = 0.6

structure of the waves is in accordancewith roguewave
features. The short lifetime of rogue wave profiles is
well observed throughout the point of their appear-
ance and disappearance [see Figs. 1, 2, 4, 5, 6, 7].
Figures 4, 5, 6, 7 and 8 exhibit the collision of rogue
waves, but it can be seen that their amplitudes are
almost the same when one compares the maximum
peak in Figs. 1 and 4 and then 2 and 5. It means
that after collision, the waves keep their amplitude.
This is a property of solitary waves, but as these
waves are also localized in both space (τ ) and time
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Fig. 3 First-order amplitude of nonparaxial chiral optical rogue
waves of Eq. (34), with d = 0.05 and ν = 6
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Fig. 4 Second-order amplitude of nonparaxial chiral optical
rogue waves of Eq. (35), with d = 10 and ν = 0.6

(ξ ), they are usual rogue waves. Nevertheless, a dif-
ference is observed when comparing the high peak
in Figs. 3 and 6. This difference is due to the weak
value of the nonparaxial parameter d which perturbs,
on the one hand, the both localization to coordinates
and, on the other hand, the short propagation of rogue
waves. This can be an advantage in the case where
one needs to extend the lifetime of rogue waves in
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Fig. 5 Plot (a) and contour plot (b) of the second-order rogue
wave solution: Eq. (35), with d = 0.5 and ν = 0.6
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Fig. 6 3D representation (a) and contour plot (b) of the second-
order analytical rogue wave amplitude of Eq. (35), for d = 0.05
and ν = 6

physical systems. Moreover, this depicts the behav-
ior of waves in systems where the paraxial approxima-
tion is violated. A similar behavior is also observed in
Fig. 7, but this time with a high value of the parameter
d. It can be seen that the property of central charac-
ter of the maximum peak of rogue wave is verified,
but the property of localization of rogue wave proto-
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Fig. 7 3D (a) and 2D (b) representations of the first-order
numerical rogue wave amplitude of Eq. (1), for d = 10 and
ν = 6

Fig. 8 3D (a) and 2D (b) representations of the second-order
numerical rogue wave amplitude of Eq. (1), for d = 10 and
ν = 6

types is not anymore valid. Contrary to Fig. 7 which
depicts the first-order solution, Fig. 8 (second-order
solution) presents a different behavior, in the sense that
the both localization and central character properties
remain valid. This confirms the evidence of second-
order rogue wave solutions of beingmore interesting in
view of their precisions in realistic problems in optics.

One can add that Figs. 1, 2, 4, 5 and 8 depict the
PS behavior throughout their both localization to coor-
dinates, whereas Figs. 3, 6 and 7 depict a behavior
near to the ABs. In the above figures, the diversity of
shape is also observed. One denotes structures with
one peak and two holes [see Figs. 1, 2] and then struc-
tures with triple peaks and two holes [see Figs. 4, 5].
More specifically, one founds a rogue wave structure

with amultiplicity of peaks surrounding by holeswhich
become linear to the vicinity of coordinates. This phe-
nomenon is due to the degeneration of the rogue wave
structure which starts by the break up of joined holes
and then by the degeneration of holes which loss their
lobes so far to become linear structures. As a conse-
quence, a weak value of nonparaxiality can be benefit
to reduce the amplitude of waves in physical systems
when the MI increases drastically. This framework can
be used to improve the stability of ultrashort pulses dur-
ing their propagation in chiral optical fibers. In contrast
to second-order analytical rogue wave solutions which
have butterfly structures, numerical rogue wave solu-
tions have rectilinear structures in both hands on the
first order [see Fig. 7] and one peak issue from the col-
lision ofwaves at the center of coordinates,more visible
in second-order numerical solutions [see Fig. 8].More-
over, Figs. 1, 4 and 7 exhibit a linear motions, whereas
Figs. 2, 3, 5, 6 and 8 reveal a rotational motions. The
slight rotation of the shape observed in Figs. 2 and 5
is amplified in Figs. 6 and 7, respectively. This ampli-
fication of rotation motion is due to the weak value of
nonparaxial parameter d. This behavior of motion con-
version is a property of chiral materials [20]. A concor-
dance is observed on themotion conversion property as
shown in Fig. 3 (first-order rogue wave analytical solu-
tions) and in Fig. 7c, d (first-order rogue wave numer-
ical solutions), on the one hand. On the other hand, a
concordance can be observed on the shape of the max-
imum peak central character of their localization and
on the amplitude as shown in Figs. 4a and 5a (for the
second-order rogue wave analytical solutions) and in
Fig. 8a, b (for the second-order rogue wave numeri-
cal solutions). Moreover, the contour plot of the LCP
(|ψ2− (ξ, τ )|) in Fig. 6a (second-order rogue wave ana-
lytical solution) reveals as shown in Fig. 8 the rotational
conversion property of chiral materials. Moreover, the
conversion is also due to the chiral parameter related to
coefficients of the original equation. Those coefficients
are related to the effective propagation distance, simi-
larity variable, amplitude and phase of the wave. These
are the main parameters responsible of rotational con-
version on the LCP and RCP components. However,
the prompt action of rotational conversion is observed
for a high value of parameter ν related to TOD and
weak value of nonparaxial parameter d. The inverse
process is also observed for a weak of parameter ν and
high value of parameter d.
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5 Conclusion

To understand the physical nature of the optical activity
and to elucidate the chiral material properties on rogue
wave propagation in chiral optical fiber, one focuses
the attention on a higher-order nonparaxial chiral NLS
equation. One founds that optical fibers filled with chi-
ralmaterial have a plurality of physical behaviors.Opti-
cal fibers with chiral core allow the propagation of
two modes with different vectors. The LCP component
refers to the counterclockwise rotation, namely, lev-
orotatory, and the RCP component refers to the clock-
wise rotation, namely, dextrorotatory. Their structures
in some cases are well localized in coordinates and for
others similar to the ABs behavior. This localization
is degenerated for weak value of nonparaxial param-
eter which governs both the central character of peak
and rogue wave localization to coordinates. Moreover,
this weak value is also responsible to the violation of
paraxial approximation. Therefore, onemay control the
paraxial approximation, in multiplexed systems and
in nanostructures in which this violation can occur.
In addition, second-order rogue wave solutions were
claimed to be more interesting in the study of wave
propagation in realistic problems in optics.

The remarkable rotational property of chiral optical
fibers is observed throughout the degeneration of lobes
of butterfly structures which are converted from linear
to rotational motion. This conversion is well observed
in this work on contour plots of analytical and numeri-
cal simulations.As additional property of chiralmateri-
als, chiral optical refractive index has the peculiarity of
being slightly higher compared to the refractive index
of the cladding. This slight difference plays an undeni-
able role in optical propagation, in the sense that it is
responsible to the total reflection of the light through
the chiral core of optical fibers. Hence, there is the great
importance of chiral materials.Moreover, helical struc-
tures with given chirality have an excellent mechanical
behavior due to their remarkable rotational property.
They provide the direct way to convert linear motion
to rotational motion and vice versa. In consequence,
in addition to the simultaneous controllability of the
degeneration of waves and chiral level ofmaterials, this
work provides a theoretical framework to improve the
controllable conversion of LCP and RCP waves, from
linear to rotational motion and vice versa, as well as
further experimental investigation of rogue wave prop-
agation in chiral optical fibers.
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